File size: 9,240 Bytes
89289b0
 
 
a4e1c3f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
89289b0
 
 
 
62d1c2f
 
89289b0
 
 
 
 
 
c3aef1e
89289b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c3aef1e
89289b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cdd1aef
89289b0
 
 
 
cdd1aef
 
 
 
 
 
89289b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c3c9f42
89289b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a4e1c3f
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
---
language:
- en
license: apache-2.0
model-index:
- name: DeciLM-7B
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: AI2 Reasoning Challenge (25-Shot)
      type: ai2_arc
      config: ARC-Challenge
      split: test
      args:
        num_few_shot: 25
    metrics:
    - type: acc_norm
      value: 59.39
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Deci/DeciLM-7B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: HellaSwag (10-Shot)
      type: hellaswag
      split: validation
      args:
        num_few_shot: 10
    metrics:
    - type: acc_norm
      value: 82.51
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Deci/DeciLM-7B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU (5-Shot)
      type: cais/mmlu
      config: all
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 59.76
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Deci/DeciLM-7B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: TruthfulQA (0-shot)
      type: truthful_qa
      config: multiple_choice
      split: validation
      args:
        num_few_shot: 0
    metrics:
    - type: mc2
      value: 40.33
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Deci/DeciLM-7B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: Winogrande (5-shot)
      type: winogrande
      config: winogrande_xl
      split: validation
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 79.95
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Deci/DeciLM-7B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GSM8k (5-shot)
      type: gsm8k
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 47.38
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Deci/DeciLM-7B
      name: Open LLM Leaderboard
---
# DeciLM-7B

DeciLM-7B is a 7.04 billion parameter decoder-only text generation model, released under the Apache 2.0 license. At the time of release, DeciLM-7B is the top-performing 7B base language model on the Open LLM Leaderboard. With support for an 8K-token sequence length, this highly efficient model uses variable Grouped-Query Attention (GQA) to achieve a superior balance between accuracy and computational efficiency. The model's architecture was generated using Deci's proprietary Neural Architecture Search technology, AutoNAC. 


## Model Details

### Model Description

Deci developed and released the DeciLM-7B language model, a pre-trained, high-efficiency text generation model with 7 billion parameters. DeciLM-7B is not only the most accurate 7B base model, but it also outpaces all models in its class with a throughput that is up to 4.4x that of Mistral-7B's. An instruct version [DeciLM-7B-instruct](https://huggingface.co/Deci/DeciLM-7B-instruct) has also been released.

- **Developed by:** [Deci](https://deci.ai/?utm_campaign=repos&utm_source=hugging-face&utm_medium=model-card&utm_content=decilm-7b)
- **Model type:** DeciLM is an auto-regressive language model using an optimized transformer decoder architecture that includes variable Grouped-Query Attention.
- **Language(s) (NLP):** English
- **License:** Apache 2.0

## Model Architecture

| Parameters | Layers | Heads  | Sequence Length  | GQA num_key_value_heads*  |
|:----------|:----------|:----------|:----------|:----------|
| 7.04 billion    | 32    | 32    | 8192   | Variable  |

*AutoNAC was employed to optimize the selection of the GQA num_key_value_heads for each layer.


### Model Sources

- **Blog:** [DeciLM-7B Technical Blog](https://deci.ai/blog/introducing-DeciLM-7B-the-fastest-and-most-accurate-7b-large-language-model-to-date/?utm_campaign=repos&utm_source=hugging-face&utm_medium=model-card&utm_content=decilm-7b)
- **Demo:** [DeciLM-7B-instruct Demo](https://huggingface.co/spaces/Deci/DeciLM-7B-instruct)
- **Finetuning Notebook:** [DeciLM-7B Finetuning Notebook](https://colab.research.google.com/drive/1kEV6i96AQ94xTCvSd11TxkEaksTb5o3U?usp=sharing)
- **Text Generation Notebook:** [DeciLM-7B-instruct Text Generation Notebook](https://bit.ly/declm-7b-instruct)

## Uses

The model is intended for commercial and research use in English and can be fine-tuned for various tasks and languages.

## How to Get Started with the Model

Use the code below to get started with the model.

```bibtex
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "Deci/DeciLM-7B"
device = "cuda" # for GPU usage or "cpu" for CPU usage

tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype="auto", trust_remote_code=True).to(device)

inputs = tokenizer.encode("In a shocking finding, scientists discovered a herd of unicorns living in", return_tensors="pt").to(device)
outputs = model.generate(inputs, max_new_tokens=100, do_sample=True, top_p=0.95)
print(tokenizer.decode(outputs[0]))

# The model can also be used via the text-generation pipeline interface
from transformers import pipeline
generator = pipeline("text-generation", "Deci/DeciLM-7B", torch_dtype="auto", trust_remote_code=True, device=device)
outputs = generator("In a shocking finding, scientists discovered a herd of unicorns living in", max_new_tokens=100, do_sample=True, top_p=0.95)
print(outputs[0]["generated_text"])
```

## Evaluation

Below are DeciLM-7B and DeciLM-7B-instruct's Open LLM Leaderboard results.

| Model | Average | ARC | HellaSwag | MMLU | TruthfulQA | Winogrande | GSM8K | 
|:----------|:---------:|:---------:|:---------:|:---------:|:---------:|:---------:|:---------:|
| DecilLM-7B | 61.55    | 59.39    | 82.51    | 59.76  | 40.33    | 79.95    | 47.38    | 
| DecilLM-7B-instruct | 63.19    | 61.01    | 82.37    | 60.24  | 49.75    | 79.72    | 46.02    | 

### Runtime Benchmarks

| Inference Tool | Hardware | Prompt length | Generation length | Generated tokens/sec | Batch Size | Number of Prompts |
|:----------|:----------|:---------:|:---------:|:---------:|:---------:|:---------:|
| HuggingFace (PyTorch) | A100 (SXM4-80GB-400W) | 512 | 512 | **1174** |  352 | 352 | 
| HuggingFace (PyTorch) | A100 (SXM4-80GB-400W) | 2048 | 2048 | **328** | 72 | 72 |
| Infery-LLM | A100 (SXM4-80GB-400W)| 512 | 512 | **4559**  | 1024 | 4096 |
| Infery-LLM | A100 (SXM4-80GB-400W) | 2048 | 2048 | **3997** | 512 | 2048 | 
| Infery-LLM | A10 | 512 | 512 | **1345** | 128 | 512 |  
| Infery-LLM | A10 | 2048 | 2048 | **599** | 32 | 128 | 

- In order to replicate the results of the Hugging Face benchmarks, you can use this [code example](https://huggingface.co/Deci/DeciLM-7B/blob/main/benchmark_hf_model.py).
- Infery-LLM, Deci's inference engine, features a suite of optimization algorithms, including selective quantization, optimized beam search, continuous batching, and custom CUDA kernels. To explore the capabilities of Infery-LLM, [schedule a live demo](https://deci.ai/infery-llm-book-a-demo/?utm_campaign=DeciLM%207B%20Launch&utm_source=HF&utm_medium=decilm7b-model-card&utm_term=infery-demo).

## Ethical Considerations and Limitations

DeciLM-7B is a new technology that comes with inherent risks associated with its use. The testing conducted so far has been primarily in English and does not encompass all possible scenarios. Like those of all large language models, DeciLM-7B's outputs are unpredictable, and the model may generate responses that are inaccurate, biased, or otherwise objectionable. Consequently, developers planning to use DeciLM-7B should undertake thorough safety testing and tuning designed explicitly for their intended applications of the model before deployment.

## How to Cite

Please cite this model using this format.

```bibtex
@misc{DeciFoundationModels,
title = {DeciLM-7B},
author = {DeciAI Research Team},
year = {2023}
url={https://huggingface.co/Deci/DeciLM-7B},
}
```
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_Deci__DeciLM-7B)

|             Metric              |Value|
|---------------------------------|----:|
|Avg.                             |61.55|
|AI2 Reasoning Challenge (25-Shot)|59.39|
|HellaSwag (10-Shot)              |82.51|
|MMLU (5-Shot)                    |59.76|
|TruthfulQA (0-shot)              |40.33|
|Winogrande (5-shot)              |79.95|
|GSM8k (5-shot)                   |47.38|