File size: 9,240 Bytes
89289b0 a4e1c3f 89289b0 62d1c2f 89289b0 c3aef1e 89289b0 c3aef1e 89289b0 cdd1aef 89289b0 cdd1aef 89289b0 c3c9f42 89289b0 a4e1c3f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 |
---
language:
- en
license: apache-2.0
model-index:
- name: DeciLM-7B
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 59.39
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Deci/DeciLM-7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 82.51
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Deci/DeciLM-7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 59.76
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Deci/DeciLM-7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 40.33
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Deci/DeciLM-7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 79.95
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Deci/DeciLM-7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 47.38
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Deci/DeciLM-7B
name: Open LLM Leaderboard
---
# DeciLM-7B
DeciLM-7B is a 7.04 billion parameter decoder-only text generation model, released under the Apache 2.0 license. At the time of release, DeciLM-7B is the top-performing 7B base language model on the Open LLM Leaderboard. With support for an 8K-token sequence length, this highly efficient model uses variable Grouped-Query Attention (GQA) to achieve a superior balance between accuracy and computational efficiency. The model's architecture was generated using Deci's proprietary Neural Architecture Search technology, AutoNAC.
## Model Details
### Model Description
Deci developed and released the DeciLM-7B language model, a pre-trained, high-efficiency text generation model with 7 billion parameters. DeciLM-7B is not only the most accurate 7B base model, but it also outpaces all models in its class with a throughput that is up to 4.4x that of Mistral-7B's. An instruct version [DeciLM-7B-instruct](https://huggingface.co/Deci/DeciLM-7B-instruct) has also been released.
- **Developed by:** [Deci](https://deci.ai/?utm_campaign=repos&utm_source=hugging-face&utm_medium=model-card&utm_content=decilm-7b)
- **Model type:** DeciLM is an auto-regressive language model using an optimized transformer decoder architecture that includes variable Grouped-Query Attention.
- **Language(s) (NLP):** English
- **License:** Apache 2.0
## Model Architecture
| Parameters | Layers | Heads | Sequence Length | GQA num_key_value_heads* |
|:----------|:----------|:----------|:----------|:----------|
| 7.04 billion | 32 | 32 | 8192 | Variable |
*AutoNAC was employed to optimize the selection of the GQA num_key_value_heads for each layer.
### Model Sources
- **Blog:** [DeciLM-7B Technical Blog](https://deci.ai/blog/introducing-DeciLM-7B-the-fastest-and-most-accurate-7b-large-language-model-to-date/?utm_campaign=repos&utm_source=hugging-face&utm_medium=model-card&utm_content=decilm-7b)
- **Demo:** [DeciLM-7B-instruct Demo](https://huggingface.co/spaces/Deci/DeciLM-7B-instruct)
- **Finetuning Notebook:** [DeciLM-7B Finetuning Notebook](https://colab.research.google.com/drive/1kEV6i96AQ94xTCvSd11TxkEaksTb5o3U?usp=sharing)
- **Text Generation Notebook:** [DeciLM-7B-instruct Text Generation Notebook](https://bit.ly/declm-7b-instruct)
## Uses
The model is intended for commercial and research use in English and can be fine-tuned for various tasks and languages.
## How to Get Started with the Model
Use the code below to get started with the model.
```bibtex
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "Deci/DeciLM-7B"
device = "cuda" # for GPU usage or "cpu" for CPU usage
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype="auto", trust_remote_code=True).to(device)
inputs = tokenizer.encode("In a shocking finding, scientists discovered a herd of unicorns living in", return_tensors="pt").to(device)
outputs = model.generate(inputs, max_new_tokens=100, do_sample=True, top_p=0.95)
print(tokenizer.decode(outputs[0]))
# The model can also be used via the text-generation pipeline interface
from transformers import pipeline
generator = pipeline("text-generation", "Deci/DeciLM-7B", torch_dtype="auto", trust_remote_code=True, device=device)
outputs = generator("In a shocking finding, scientists discovered a herd of unicorns living in", max_new_tokens=100, do_sample=True, top_p=0.95)
print(outputs[0]["generated_text"])
```
## Evaluation
Below are DeciLM-7B and DeciLM-7B-instruct's Open LLM Leaderboard results.
| Model | Average | ARC | HellaSwag | MMLU | TruthfulQA | Winogrande | GSM8K |
|:----------|:---------:|:---------:|:---------:|:---------:|:---------:|:---------:|:---------:|
| DecilLM-7B | 61.55 | 59.39 | 82.51 | 59.76 | 40.33 | 79.95 | 47.38 |
| DecilLM-7B-instruct | 63.19 | 61.01 | 82.37 | 60.24 | 49.75 | 79.72 | 46.02 |
### Runtime Benchmarks
| Inference Tool | Hardware | Prompt length | Generation length | Generated tokens/sec | Batch Size | Number of Prompts |
|:----------|:----------|:---------:|:---------:|:---------:|:---------:|:---------:|
| HuggingFace (PyTorch) | A100 (SXM4-80GB-400W) | 512 | 512 | **1174** | 352 | 352 |
| HuggingFace (PyTorch) | A100 (SXM4-80GB-400W) | 2048 | 2048 | **328** | 72 | 72 |
| Infery-LLM | A100 (SXM4-80GB-400W)| 512 | 512 | **4559** | 1024 | 4096 |
| Infery-LLM | A100 (SXM4-80GB-400W) | 2048 | 2048 | **3997** | 512 | 2048 |
| Infery-LLM | A10 | 512 | 512 | **1345** | 128 | 512 |
| Infery-LLM | A10 | 2048 | 2048 | **599** | 32 | 128 |
- In order to replicate the results of the Hugging Face benchmarks, you can use this [code example](https://huggingface.co/Deci/DeciLM-7B/blob/main/benchmark_hf_model.py).
- Infery-LLM, Deci's inference engine, features a suite of optimization algorithms, including selective quantization, optimized beam search, continuous batching, and custom CUDA kernels. To explore the capabilities of Infery-LLM, [schedule a live demo](https://deci.ai/infery-llm-book-a-demo/?utm_campaign=DeciLM%207B%20Launch&utm_source=HF&utm_medium=decilm7b-model-card&utm_term=infery-demo).
## Ethical Considerations and Limitations
DeciLM-7B is a new technology that comes with inherent risks associated with its use. The testing conducted so far has been primarily in English and does not encompass all possible scenarios. Like those of all large language models, DeciLM-7B's outputs are unpredictable, and the model may generate responses that are inaccurate, biased, or otherwise objectionable. Consequently, developers planning to use DeciLM-7B should undertake thorough safety testing and tuning designed explicitly for their intended applications of the model before deployment.
## How to Cite
Please cite this model using this format.
```bibtex
@misc{DeciFoundationModels,
title = {DeciLM-7B},
author = {DeciAI Research Team},
year = {2023}
url={https://huggingface.co/Deci/DeciLM-7B},
}
```
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_Deci__DeciLM-7B)
| Metric |Value|
|---------------------------------|----:|
|Avg. |61.55|
|AI2 Reasoning Challenge (25-Shot)|59.39|
|HellaSwag (10-Shot) |82.51|
|MMLU (5-Shot) |59.76|
|TruthfulQA (0-shot) |40.33|
|Winogrande (5-shot) |79.95|
|GSM8k (5-shot) |47.38|
|