---
license: apache-2.0
base_model: beomi/OPEN-SOLAR-KO-10.7B
tags:
- generated_from_trainer
model-index:
- name: data/Models/beomidpo-out-v4
results: []
---
[](https://github.com/OpenAccess-AI-Collective/axolotl)
See axolotl config
axolotl version: `0.4.0`
```yaml
base_model: beomi/OPEN-SOLAR-KO-10.7B
load_in_8bit: false
load_in_4bit: false
strict: false
rl: dpo
datasets:
- path: ./data/KR/Ja-ck/Orca-DPO-Pairs-KO/orca_dpo_pairs_ko.json
split: train
type: chatml.intel
ds_type: json
data_files: ["./data/KR/Ja-ck/Orca-DPO-Pairs-KO/orca_dpo_pairs_ko.json"]
dataset_prepared_path:
val_set_size: 0.0
output_dir: ./data/Models/beomidpo-out-v4
adapter: lora
lora_model_dir:
sequence_len: 2048
sample_packing: false
pad_to_sequence_len: false
lora_r: 8
lora_alpha: 32
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:
lora_target_modules:
- q_proj
- v_proj
- k_proj
- o_proj
gradient_accumulation_steps: 1
micro_batch_size: 1
num_epochs: 1
optimizer: paged_adamw_8bit
lr_scheduler: cosine
learning_rate: 2e-5
train_on_inputs: false
group_by_length: false
bf16: false
fp16: true
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: false
warmup_steps: 10
save_steps: 100
save_total_limit: 3
debug:
deepspeed: deepspeed_configs/zero2.json
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
save_safetensors: true
```
# data/Models/beomidpo-out-v4
This model is a fine-tuned version of [beomi/OPEN-SOLAR-KO-10.7B](https://huggingface.co/beomi/OPEN-SOLAR-KO-10.7B) on the None dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 1
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- total_train_batch_size: 8
- total_eval_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 1591
### Training results
### Framework versions
- Transformers 4.38.0.dev0
- Pytorch 2.0.1+cu118
- Datasets 2.16.1
- Tokenizers 0.15.0