---
library_name: transformers
license: llama3
base_model: arcee-ai/Llama-3.1-SuperNova-Lite
tags:
- generated_from_trainer
model-index:
- name: outputs
results: []
---
[](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config
axolotl version: `0.4.1`
```yaml
base_model: arcee-ai/Llama-3.1-SuperNova-Lite
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
load_in_8bit: false
load_in_4bit: false
strict: false
datasets:
- path: NewEden/CharacterAI-logs-sharegpt-Ngram-Cleaned
type: sharegpt
conversation: llama3
- path: NewEden/OpenCAI-ShareGPT
type: sharegpt
conversation: llama3
chat_template: llama3
#val_set_size: 0.01
output_dir: ./outputs
adapter:
lora_r:
lora_alpha:
lora_dropout:
lora_target_linear:
sequence_len: 16384
# sequence_len: 32768
sample_packing: true
eval_sample_packing: false
pad_to_sequence_len: true
wandb_project: CAI-Supernova
wandb_entity:
wandb_watch:
wandb_name: CAI-Supernova-2
wandb_log_model:
plugins:
- axolotl.integrations.liger.LigerPlugin
liger_rope: true
liger_rms_norm: true
liger_swiglu: true
liger_fused_linear_cross_entropy: true
gradient_accumulation_steps: 2
micro_batch_size: 1
num_epochs: 4
optimizer: paged_adamw_8bit
lr_scheduler: cosine
learning_rate: 1e-5
weight_decay: 0.05
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: true
gradient_checkpointing: unsloth
early_stopping_patience:
resume_from_checkpoint:
#auto_resume_from_checkpoints: true
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_steps: 15
#evals_per_epoch: 4
eval_table_size:
#eval_max_new_tokens: 128
saves_per_epoch: 1
debug:
deepspeed: /workspace/axolotl/deepspeed_configs/zero3_bf16_cpuoffload_params.json
fsdp:
fsdp_config:
special_tokens:
pad_token: <|finetune_right_pad_id|>
eos_token: <|eot_id|>
```
# outputs
This model is a fine-tuned version of [arcee-ai/Llama-3.1-SuperNova-Lite](https://huggingface.co/arcee-ai/Llama-3.1-SuperNova-Lite) on the None dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- total_eval_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 15
- num_epochs: 4
### Training results
### Framework versions
- Transformers 4.44.2
- Pytorch 2.3.1+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1