File size: 1,725 Bytes
b4be2d8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 |
---
license: apache-2.0
base_model: bert-large-cased
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: FakeNews-bert-large-cased-stable
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# FakeNews-bert-large-cased-stable
This model is a fine-tuned version of [bert-large-cased](https://huggingface.co/bert-large-cased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1020
- Accuracy: 0.9827
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-06
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.3549 | 1.0 | 802 | 0.3255 | 0.9453 |
| 0.1063 | 2.0 | 1605 | 0.1305 | 0.9771 |
| 0.0412 | 3.0 | 2407 | 0.1020 | 0.9827 |
| 0.0096 | 4.0 | 3210 | 0.1242 | 0.9822 |
| 0.0001 | 5.0 | 4010 | 0.1315 | 0.9827 |
### Framework versions
- Transformers 4.35.0
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1
|