File size: 1,595 Bytes
bf51a0b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 |
---
license: mit
base_model: roberta-large
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: FakeNews-roberta-large
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# FakeNews-roberta-large
This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6947
- Accuracy: 0.4766
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.7142 | 1.0 | 1605 | 0.6954 | 0.5234 |
| 0.7097 | 2.0 | 3210 | 0.6947 | 0.4766 |
| 0.7033 | 3.0 | 4815 | 0.7499 | 0.4766 |
| 0.691 | 4.0 | 6420 | 1.2268 | 0.4766 |
| 0.6693 | 5.0 | 8025 | 1.5704 | 0.4766 |
### Framework versions
- Transformers 4.34.1
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1
|