--- language: - en license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_trainer datasets: - custom_dataset metrics: - wer model-index: - name: Finetuned_whisper_tiny results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Dev372/Cardiology_Medical_STT_Dataset_split type: custom_dataset args: 'split: test' metrics: - name: Wer type: wer value: 2.4311183144246353 --- # Finetuned_whisper_tiny This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the Dev372/Cardiology_Medical_STT_Dataset_split dataset. It achieves the following results on the evaluation set: - Loss: 0.0460 - Wer: 2.4311 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 15 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 1500 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-------:|:----:|:---------------:|:------:| | 0.0045 | 6.0976 | 500 | 0.0424 | 2.4311 | | 0.0008 | 12.1951 | 1000 | 0.0446 | 2.4311 | | 0.0006 | 18.2927 | 1500 | 0.0460 | 2.4311 | ### Framework versions - Transformers 4.42.4 - Pytorch 2.1.2 - Datasets 2.20.0 - Tokenizers 0.19.1