--- language: - en license: apache-2.0 base_model: openai/whisper-tiny.en tags: - generated_from_trainer datasets: - Dev372/Medical_STT_Dataset_1.1 metrics: - wer model-index: - name: English Whisper Model results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Medical type: Dev372/Medical_STT_Dataset_1.1 args: 'split: test' metrics: - name: Wer type: wer value: 6.283680067931677 --- # English Whisper Model This model is a fine-tuned version of [openai/whisper-tiny.en](https://huggingface.co/openai/whisper-tiny.en) on the Medical dataset. It achieves the following results on the evaluation set: - Loss: 0.1252 - Wer: 6.2837 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 18 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 1500 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 1.2359 | 0.2825 | 100 | 1.0423 | 10.4935 | | 0.6633 | 0.5650 | 200 | 0.6451 | 9.5072 | | 0.4199 | 0.8475 | 300 | 0.3864 | 8.5078 | | 0.1541 | 1.1299 | 400 | 0.1895 | 7.4202 | | 0.1228 | 1.4124 | 500 | 0.1642 | 6.8781 | | 0.1132 | 1.6949 | 600 | 0.1471 | 6.8422 | | 0.1076 | 1.9774 | 700 | 0.1356 | 6.3261 | | 0.0717 | 2.2599 | 800 | 0.1333 | 6.1334 | | 0.0682 | 2.5424 | 900 | 0.1284 | 6.3947 | | 0.0627 | 2.8249 | 1000 | 0.1265 | 6.5972 | | 0.0367 | 3.1073 | 1100 | 0.1261 | 6.2478 | | 0.0452 | 3.3898 | 1200 | 0.1265 | 6.3784 | | 0.0374 | 3.6723 | 1300 | 0.1257 | 6.3980 | | 0.0523 | 3.9548 | 1400 | 0.1248 | 6.1596 | | 0.031 | 4.2373 | 1500 | 0.1252 | 6.2837 | ### Framework versions - Transformers 4.43.3 - Pytorch 2.1.2 - Datasets 2.20.0 - Tokenizers 0.19.1