DevOG commited on
Commit
b23284c
·
verified ·
1 Parent(s): aef609e

Upload 17 files

Browse files
added_tokens.json ADDED
@@ -0,0 +1,108 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "<|af|>": 50327,
3
+ "<|am|>": 50334,
4
+ "<|ar|>": 50272,
5
+ "<|as|>": 50350,
6
+ "<|az|>": 50304,
7
+ "<|ba|>": 50355,
8
+ "<|be|>": 50330,
9
+ "<|bg|>": 50292,
10
+ "<|bn|>": 50302,
11
+ "<|bo|>": 50347,
12
+ "<|br|>": 50309,
13
+ "<|bs|>": 50315,
14
+ "<|ca|>": 50270,
15
+ "<|cs|>": 50283,
16
+ "<|cy|>": 50297,
17
+ "<|da|>": 50285,
18
+ "<|de|>": 50261,
19
+ "<|el|>": 50281,
20
+ "<|en|>": 50259,
21
+ "<|es|>": 50262,
22
+ "<|et|>": 50307,
23
+ "<|eu|>": 50310,
24
+ "<|fa|>": 50300,
25
+ "<|fi|>": 50277,
26
+ "<|fo|>": 50338,
27
+ "<|fr|>": 50265,
28
+ "<|gl|>": 50319,
29
+ "<|gu|>": 50333,
30
+ "<|haw|>": 50352,
31
+ "<|ha|>": 50354,
32
+ "<|he|>": 50279,
33
+ "<|hi|>": 50276,
34
+ "<|hr|>": 50291,
35
+ "<|ht|>": 50339,
36
+ "<|hu|>": 50286,
37
+ "<|hy|>": 50312,
38
+ "<|id|>": 50275,
39
+ "<|is|>": 50311,
40
+ "<|it|>": 50274,
41
+ "<|ja|>": 50266,
42
+ "<|jw|>": 50356,
43
+ "<|ka|>": 50329,
44
+ "<|kk|>": 50316,
45
+ "<|km|>": 50323,
46
+ "<|kn|>": 50306,
47
+ "<|ko|>": 50264,
48
+ "<|la|>": 50294,
49
+ "<|lb|>": 50345,
50
+ "<|ln|>": 50353,
51
+ "<|lo|>": 50336,
52
+ "<|lt|>": 50293,
53
+ "<|lv|>": 50301,
54
+ "<|mg|>": 50349,
55
+ "<|mi|>": 50295,
56
+ "<|mk|>": 50308,
57
+ "<|ml|>": 50296,
58
+ "<|mn|>": 50314,
59
+ "<|mr|>": 50320,
60
+ "<|ms|>": 50282,
61
+ "<|mt|>": 50343,
62
+ "<|my|>": 50346,
63
+ "<|ne|>": 50313,
64
+ "<|nl|>": 50271,
65
+ "<|nn|>": 50342,
66
+ "<|nocaptions|>": 50362,
67
+ "<|notimestamps|>": 50363,
68
+ "<|no|>": 50288,
69
+ "<|oc|>": 50328,
70
+ "<|pa|>": 50321,
71
+ "<|pl|>": 50269,
72
+ "<|ps|>": 50340,
73
+ "<|pt|>": 50267,
74
+ "<|ro|>": 50284,
75
+ "<|ru|>": 50263,
76
+ "<|sa|>": 50344,
77
+ "<|sd|>": 50332,
78
+ "<|si|>": 50322,
79
+ "<|sk|>": 50298,
80
+ "<|sl|>": 50305,
81
+ "<|sn|>": 50324,
82
+ "<|so|>": 50326,
83
+ "<|sq|>": 50317,
84
+ "<|sr|>": 50303,
85
+ "<|startoflm|>": 50360,
86
+ "<|startofprev|>": 50361,
87
+ "<|startoftranscript|>": 50258,
88
+ "<|su|>": 50357,
89
+ "<|sv|>": 50273,
90
+ "<|sw|>": 50318,
91
+ "<|ta|>": 50287,
92
+ "<|te|>": 50299,
93
+ "<|tg|>": 50331,
94
+ "<|th|>": 50289,
95
+ "<|tk|>": 50341,
96
+ "<|tl|>": 50348,
97
+ "<|transcribe|>": 50359,
98
+ "<|translate|>": 50358,
99
+ "<|tr|>": 50268,
100
+ "<|tt|>": 50351,
101
+ "<|uk|>": 50280,
102
+ "<|ur|>": 50290,
103
+ "<|uz|>": 50337,
104
+ "<|vi|>": 50278,
105
+ "<|yi|>": 50335,
106
+ "<|yo|>": 50325,
107
+ "<|zh|>": 50260
108
+ }
config.json ADDED
@@ -0,0 +1,41 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "openai/whisper-medium",
3
+ "activation_dropout": 0.0,
4
+ "activation_function": "gelu",
5
+ "architectures": [
6
+ "WhisperForConditionalGeneration"
7
+ ],
8
+ "attention_dropout": 0.0,
9
+ "begin_suppress_tokens": [
10
+ 220,
11
+ 50257
12
+ ],
13
+ "bos_token_id": 50257,
14
+ "d_model": 1024,
15
+ "decoder_attention_heads": 16,
16
+ "decoder_ffn_dim": 4096,
17
+ "decoder_layerdrop": 0.0,
18
+ "decoder_layers": 24,
19
+ "decoder_start_token_id": 50258,
20
+ "dropout": 0.0,
21
+ "encoder_attention_heads": 16,
22
+ "encoder_ffn_dim": 4096,
23
+ "encoder_layerdrop": 0.0,
24
+ "encoder_layers": 24,
25
+ "eos_token_id": 50257,
26
+ "forced_decoder_ids": null,
27
+ "init_std": 0.02,
28
+ "is_encoder_decoder": true,
29
+ "max_length": 448,
30
+ "max_source_positions": 1500,
31
+ "max_target_positions": 448,
32
+ "model_type": "whisper",
33
+ "num_hidden_layers": 24,
34
+ "num_mel_bins": 80,
35
+ "pad_token_id": 50257,
36
+ "scale_embedding": false,
37
+ "torch_dtype": "float16",
38
+ "transformers_version": "4.27.0.dev0",
39
+ "use_cache": false,
40
+ "vocab_size": 51865
41
+ }
generation_config.json ADDED
@@ -0,0 +1,222 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "begin_suppress_tokens": [
3
+ 220,
4
+ 50257
5
+ ],
6
+ "bos_token_id": 50257,
7
+ "decoder_start_token_id": 50258,
8
+ "eos_token_id": 50257,
9
+ "forced_decoder_ids": [
10
+ [
11
+ 1,
12
+ null
13
+ ],
14
+ [
15
+ 2,
16
+ 50359
17
+ ],
18
+ [
19
+ 3,
20
+ 50363
21
+ ]
22
+ ],
23
+ "is_multilingual": true,
24
+ "lang_to_id": {
25
+ "<|af|>": 50327,
26
+ "<|am|>": 50334,
27
+ "<|ar|>": 50272,
28
+ "<|as|>": 50350,
29
+ "<|az|>": 50304,
30
+ "<|ba|>": 50355,
31
+ "<|be|>": 50330,
32
+ "<|bg|>": 50292,
33
+ "<|bn|>": 50302,
34
+ "<|bo|>": 50347,
35
+ "<|br|>": 50309,
36
+ "<|bs|>": 50315,
37
+ "<|ca|>": 50270,
38
+ "<|cs|>": 50283,
39
+ "<|cy|>": 50297,
40
+ "<|da|>": 50285,
41
+ "<|de|>": 50261,
42
+ "<|el|>": 50281,
43
+ "<|en|>": 50259,
44
+ "<|es|>": 50262,
45
+ "<|et|>": 50307,
46
+ "<|eu|>": 50310,
47
+ "<|fa|>": 50300,
48
+ "<|fi|>": 50277,
49
+ "<|fo|>": 50338,
50
+ "<|fr|>": 50265,
51
+ "<|gl|>": 50319,
52
+ "<|gu|>": 50333,
53
+ "<|haw|>": 50352,
54
+ "<|ha|>": 50354,
55
+ "<|he|>": 50279,
56
+ "<|hi|>": 50276,
57
+ "<|hr|>": 50291,
58
+ "<|ht|>": 50339,
59
+ "<|hu|>": 50286,
60
+ "<|hy|>": 50312,
61
+ "<|id|>": 50275,
62
+ "<|is|>": 50311,
63
+ "<|it|>": 50274,
64
+ "<|ja|>": 50266,
65
+ "<|jw|>": 50356,
66
+ "<|ka|>": 50329,
67
+ "<|kk|>": 50316,
68
+ "<|km|>": 50323,
69
+ "<|kn|>": 50306,
70
+ "<|ko|>": 50264,
71
+ "<|la|>": 50294,
72
+ "<|lb|>": 50345,
73
+ "<|ln|>": 50353,
74
+ "<|lo|>": 50336,
75
+ "<|lt|>": 50293,
76
+ "<|lv|>": 50301,
77
+ "<|mg|>": 50349,
78
+ "<|mi|>": 50295,
79
+ "<|mk|>": 50308,
80
+ "<|ml|>": 50296,
81
+ "<|mn|>": 50314,
82
+ "<|mr|>": 50320,
83
+ "<|ms|>": 50282,
84
+ "<|mt|>": 50343,
85
+ "<|my|>": 50346,
86
+ "<|ne|>": 50313,
87
+ "<|nl|>": 50271,
88
+ "<|nn|>": 50342,
89
+ "<|no|>": 50288,
90
+ "<|oc|>": 50328,
91
+ "<|pa|>": 50321,
92
+ "<|pl|>": 50269,
93
+ "<|ps|>": 50340,
94
+ "<|pt|>": 50267,
95
+ "<|ro|>": 50284,
96
+ "<|ru|>": 50263,
97
+ "<|sa|>": 50344,
98
+ "<|sd|>": 50332,
99
+ "<|si|>": 50322,
100
+ "<|sk|>": 50298,
101
+ "<|sl|>": 50305,
102
+ "<|sn|>": 50324,
103
+ "<|so|>": 50326,
104
+ "<|sq|>": 50317,
105
+ "<|sr|>": 50303,
106
+ "<|su|>": 50357,
107
+ "<|sv|>": 50273,
108
+ "<|sw|>": 50318,
109
+ "<|ta|>": 50287,
110
+ "<|te|>": 50299,
111
+ "<|tg|>": 50331,
112
+ "<|th|>": 50289,
113
+ "<|tk|>": 50341,
114
+ "<|tl|>": 50348,
115
+ "<|tr|>": 50268,
116
+ "<|tt|>": 50351,
117
+ "<|uk|>": 50280,
118
+ "<|ur|>": 50290,
119
+ "<|uz|>": 50337,
120
+ "<|vi|>": 50278,
121
+ "<|yi|>": 50335,
122
+ "<|yo|>": 50325,
123
+ "<|zh|>": 50260
124
+ },
125
+ "max_initial_timestamp_index": 1,
126
+ "max_length": 448,
127
+ "no_timestamps_token_id": 50363,
128
+ "pad_token_id": 50256,
129
+ "suppress_tokens": [
130
+ 1,
131
+ 2,
132
+ 7,
133
+ 8,
134
+ 9,
135
+ 10,
136
+ 14,
137
+ 25,
138
+ 26,
139
+ 27,
140
+ 28,
141
+ 29,
142
+ 31,
143
+ 58,
144
+ 59,
145
+ 60,
146
+ 61,
147
+ 62,
148
+ 63,
149
+ 90,
150
+ 91,
151
+ 92,
152
+ 93,
153
+ 359,
154
+ 503,
155
+ 522,
156
+ 542,
157
+ 873,
158
+ 893,
159
+ 902,
160
+ 918,
161
+ 922,
162
+ 931,
163
+ 1350,
164
+ 1853,
165
+ 1982,
166
+ 2460,
167
+ 2627,
168
+ 3246,
169
+ 3253,
170
+ 3268,
171
+ 3536,
172
+ 3846,
173
+ 3961,
174
+ 4183,
175
+ 4667,
176
+ 6585,
177
+ 6647,
178
+ 7273,
179
+ 9061,
180
+ 9383,
181
+ 10428,
182
+ 10929,
183
+ 11938,
184
+ 12033,
185
+ 12331,
186
+ 12562,
187
+ 13793,
188
+ 14157,
189
+ 14635,
190
+ 15265,
191
+ 15618,
192
+ 16553,
193
+ 16604,
194
+ 18362,
195
+ 18956,
196
+ 20075,
197
+ 21675,
198
+ 22520,
199
+ 26130,
200
+ 26161,
201
+ 26435,
202
+ 28279,
203
+ 29464,
204
+ 31650,
205
+ 32302,
206
+ 32470,
207
+ 36865,
208
+ 42863,
209
+ 47425,
210
+ 49870,
211
+ 50254,
212
+ 50258,
213
+ 50360,
214
+ 50361,
215
+ 50362
216
+ ],
217
+ "task_to_id": {
218
+ "transcribe": 50359,
219
+ "translate": 50358
220
+ },
221
+ "transformers_version": "4.27.0.dev0"
222
+ }
latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step5100
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
normalizer.json ADDED
@@ -0,0 +1,1742 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "accessorise": "accessorize",
3
+ "accessorised": "accessorized",
4
+ "accessorises": "accessorizes",
5
+ "accessorising": "accessorizing",
6
+ "acclimatisation": "acclimatization",
7
+ "acclimatise": "acclimatize",
8
+ "acclimatised": "acclimatized",
9
+ "acclimatises": "acclimatizes",
10
+ "acclimatising": "acclimatizing",
11
+ "accoutrements": "accouterments",
12
+ "aeon": "eon",
13
+ "aeons": "eons",
14
+ "aerogramme": "aerogram",
15
+ "aerogrammes": "aerograms",
16
+ "aeroplane": "airplane",
17
+ "aeroplanes": "airplanes",
18
+ "aesthete": "esthete",
19
+ "aesthetes": "esthetes",
20
+ "aesthetic": "esthetic",
21
+ "aesthetically": "esthetically",
22
+ "aesthetics": "esthetics",
23
+ "aetiology": "etiology",
24
+ "ageing": "aging",
25
+ "aggrandisement": "aggrandizement",
26
+ "agonise": "agonize",
27
+ "agonised": "agonized",
28
+ "agonises": "agonizes",
29
+ "agonising": "agonizing",
30
+ "agonisingly": "agonizingly",
31
+ "almanack": "almanac",
32
+ "almanacks": "almanacs",
33
+ "aluminium": "aluminum",
34
+ "amortisable": "amortizable",
35
+ "amortisation": "amortization",
36
+ "amortisations": "amortizations",
37
+ "amortise": "amortize",
38
+ "amortised": "amortized",
39
+ "amortises": "amortizes",
40
+ "amortising": "amortizing",
41
+ "amphitheatre": "amphitheater",
42
+ "amphitheatres": "amphitheaters",
43
+ "anaemia": "anemia",
44
+ "anaemic": "anemic",
45
+ "anaesthesia": "anesthesia",
46
+ "anaesthetic": "anesthetic",
47
+ "anaesthetics": "anesthetics",
48
+ "anaesthetise": "anesthetize",
49
+ "anaesthetised": "anesthetized",
50
+ "anaesthetises": "anesthetizes",
51
+ "anaesthetising": "anesthetizing",
52
+ "anaesthetist": "anesthetist",
53
+ "anaesthetists": "anesthetists",
54
+ "anaesthetize": "anesthetize",
55
+ "anaesthetized": "anesthetized",
56
+ "anaesthetizes": "anesthetizes",
57
+ "anaesthetizing": "anesthetizing",
58
+ "analogue": "analog",
59
+ "analogues": "analogs",
60
+ "analyse": "analyze",
61
+ "analysed": "analyzed",
62
+ "analyses": "analyzes",
63
+ "analysing": "analyzing",
64
+ "anglicise": "anglicize",
65
+ "anglicised": "anglicized",
66
+ "anglicises": "anglicizes",
67
+ "anglicising": "anglicizing",
68
+ "annualised": "annualized",
69
+ "antagonise": "antagonize",
70
+ "antagonised": "antagonized",
71
+ "antagonises": "antagonizes",
72
+ "antagonising": "antagonizing",
73
+ "apologise": "apologize",
74
+ "apologised": "apologized",
75
+ "apologises": "apologizes",
76
+ "apologising": "apologizing",
77
+ "appal": "appall",
78
+ "appals": "appalls",
79
+ "appetiser": "appetizer",
80
+ "appetisers": "appetizers",
81
+ "appetising": "appetizing",
82
+ "appetisingly": "appetizingly",
83
+ "arbour": "arbor",
84
+ "arbours": "arbors",
85
+ "archaeologically": "archeologically",
86
+ "archaeologist": "archeologist",
87
+ "archaeologists": "archeologists",
88
+ "archaeology": "archeology</span>",
89
+ "archeological": "archaeological",
90
+ "ardour": "ardor",
91
+ "armour": "armor",
92
+ "armoured": "armored",
93
+ "armourer": "armorer",
94
+ "armourers": "armorers",
95
+ "armouries": "armories",
96
+ "armoury": "armory",
97
+ "artefact": "artifact",
98
+ "artefacts": "artifacts",
99
+ "authorise": "authorize",
100
+ "authorised": "authorized",
101
+ "authorises": "authorizes",
102
+ "authorising": "authorizing",
103
+ "axe": "ax",
104
+ "backpedalled": "backpedaled",
105
+ "backpedalling": "backpedaling",
106
+ "bannister": "banister",
107
+ "bannisters": "banisters",
108
+ "baptise": "baptize",
109
+ "baptised": "baptized",
110
+ "baptises": "baptizes",
111
+ "baptising": "baptizing",
112
+ "bastardise": "bastardize",
113
+ "bastardised": "bastardized",
114
+ "bastardises": "bastardizes",
115
+ "bastardising": "bastardizing",
116
+ "battleax": "battleaxe",
117
+ "baulk": "balk",
118
+ "baulked": "balked",
119
+ "baulking": "balking",
120
+ "baulks": "balks",
121
+ "bedevilled": "bedeviled",
122
+ "bedevilling": "bedeviling",
123
+ "behaviour": "behavior",
124
+ "behavioural": "behavioral",
125
+ "behaviourism": "behaviorism",
126
+ "behaviourist": "behaviorist",
127
+ "behaviourists": "behaviorists",
128
+ "behaviours": "behaviors",
129
+ "behove": "behoove",
130
+ "behoved": "behooved",
131
+ "behoves": "behooves",
132
+ "bejewelled": "bejeweled",
133
+ "belabour": "belabor",
134
+ "belaboured": "belabored",
135
+ "belabouring": "belaboring",
136
+ "belabours": "belabors",
137
+ "bevelled": "beveled",
138
+ "bevvies": "bevies",
139
+ "bevvy": "bevy",
140
+ "biassed": "biased",
141
+ "biassing": "biasing",
142
+ "bingeing": "binging",
143
+ "bougainvillaea": "bougainvillea",
144
+ "bougainvillaeas": "bougainvilleas",
145
+ "bowdlerise": "bowdlerize",
146
+ "bowdlerised": "bowdlerized",
147
+ "bowdlerises": "bowdlerizes",
148
+ "bowdlerising": "bowdlerizing",
149
+ "breathalyse": "breathalyze",
150
+ "breathalysed": "breathalyzed",
151
+ "breathalyser": "breathalyzer",
152
+ "breathalysers": "breathalyzers",
153
+ "breathalyses": "breathalyzes",
154
+ "breathalysing": "breathalyzing",
155
+ "brutalise": "brutalize",
156
+ "brutalised": "brutalized",
157
+ "brutalises": "brutalizes",
158
+ "brutalising": "brutalizing",
159
+ "busses": "buses",
160
+ "bussing": "busing",
161
+ "caesarean": "cesarean",
162
+ "caesareans": "cesareans",
163
+ "calibre": "caliber",
164
+ "calibres": "calibers",
165
+ "calliper": "caliper",
166
+ "callipers": "calipers",
167
+ "callisthenics": "calisthenics",
168
+ "canalise": "canalize",
169
+ "canalised": "canalized",
170
+ "canalises": "canalizes",
171
+ "canalising": "canalizing",
172
+ "cancelation": "cancellation",
173
+ "cancelations": "cancellations",
174
+ "cancelled": "canceled",
175
+ "cancelling": "canceling",
176
+ "candour": "candor",
177
+ "cannibalise": "cannibalize",
178
+ "cannibalised": "cannibalized",
179
+ "cannibalises": "cannibalizes",
180
+ "cannibalising": "cannibalizing",
181
+ "canonise": "canonize",
182
+ "canonised": "canonized",
183
+ "canonises": "canonizes",
184
+ "canonising": "canonizing",
185
+ "capitalise": "capitalize",
186
+ "capitalised": "capitalized",
187
+ "capitalises": "capitalizes",
188
+ "capitalising": "capitalizing",
189
+ "caramelise": "caramelize",
190
+ "caramelised": "caramelized",
191
+ "caramelises": "caramelizes",
192
+ "caramelising": "caramelizing",
193
+ "carbonise": "carbonize",
194
+ "carbonised": "carbonized",
195
+ "carbonises": "carbonizes",
196
+ "carbonising": "carbonizing",
197
+ "carolled": "caroled",
198
+ "carolling": "caroling",
199
+ "catalogue": "catalog",
200
+ "catalogued": "cataloged",
201
+ "catalogues": "catalogs",
202
+ "cataloguing": "cataloging",
203
+ "catalyse": "catalyze",
204
+ "catalysed": "catalyzed",
205
+ "catalyses": "catalyzes",
206
+ "catalysing": "catalyzing",
207
+ "categorise": "categorize",
208
+ "categorised": "categorized",
209
+ "categorises": "categorizes",
210
+ "categorising": "categorizing",
211
+ "cauterise": "cauterize",
212
+ "cauterised": "cauterized",
213
+ "cauterises": "cauterizes",
214
+ "cauterising": "cauterizing",
215
+ "cavilled": "caviled",
216
+ "cavilling": "caviling",
217
+ "centigramme": "centigram",
218
+ "centigrammes": "centigrams",
219
+ "centilitre": "centiliter",
220
+ "centilitres": "centiliters",
221
+ "centimetre": "centimeter",
222
+ "centimetres": "centimeters",
223
+ "centralise": "centralize",
224
+ "centralised": "centralized",
225
+ "centralises": "centralizes",
226
+ "centralising": "centralizing",
227
+ "centre": "center",
228
+ "centred": "centered",
229
+ "centrefold": "centerfold",
230
+ "centrefolds": "centerfolds",
231
+ "centrepiece": "centerpiece",
232
+ "centrepieces": "centerpieces",
233
+ "centres": "centers",
234
+ "channelled": "channeled",
235
+ "channelling": "channeling",
236
+ "characterise": "characterize",
237
+ "characterised": "characterized",
238
+ "characterises": "characterizes",
239
+ "characterising": "characterizing",
240
+ "cheque": "check",
241
+ "chequebook": "checkbook",
242
+ "chequebooks": "checkbooks",
243
+ "chequered": "checkered",
244
+ "cheques": "checks",
245
+ "chilli": "chili",
246
+ "chimaera": "chimera",
247
+ "chimaeras": "chimeras",
248
+ "chiselled": "chiseled",
249
+ "chiselling": "chiseling",
250
+ "circularise": "circularize",
251
+ "circularised": "circularized",
252
+ "circularises": "circularizes",
253
+ "circularising": "circularizing",
254
+ "civilise": "civilize",
255
+ "civilised": "civilized",
256
+ "civilises": "civilizes",
257
+ "civilising": "civilizing",
258
+ "clamour": "clamor",
259
+ "clamoured": "clamored",
260
+ "clamouring": "clamoring",
261
+ "clamours": "clamors",
262
+ "clangour": "clangor",
263
+ "clarinettist": "clarinetist",
264
+ "clarinettists": "clarinetists",
265
+ "collectivise": "collectivize",
266
+ "collectivised": "collectivized",
267
+ "collectivises": "collectivizes",
268
+ "collectivising": "collectivizing",
269
+ "colonisation": "colonization",
270
+ "colonise": "colonize",
271
+ "colonised": "colonized",
272
+ "coloniser": "colonizer",
273
+ "colonisers": "colonizers",
274
+ "colonises": "colonizes",
275
+ "colonising": "colonizing",
276
+ "colour": "color",
277
+ "colourant": "colorant",
278
+ "colourants": "colorants",
279
+ "coloured": "colored",
280
+ "coloureds": "coloreds",
281
+ "colourful": "colorful",
282
+ "colourfully": "colorfully",
283
+ "colouring": "coloring",
284
+ "colourize": "colorize",
285
+ "colourized": "colorized",
286
+ "colourizes": "colorizes",
287
+ "colourizing": "colorizing",
288
+ "colourless": "colorless",
289
+ "colours": "colors",
290
+ "commercialise": "commercialize",
291
+ "commercialised": "commercialized",
292
+ "commercialises": "commercializes",
293
+ "commercialising": "commercializing",
294
+ "compartmentalise": "compartmentalize",
295
+ "compartmentalised": "compartmentalized",
296
+ "compartmentalises": "compartmentalizes",
297
+ "compartmentalising": "compartmentalizing",
298
+ "computerise": "computerize",
299
+ "computerised": "computerized",
300
+ "computerises": "computerizes",
301
+ "computerising": "computerizing",
302
+ "conceptualise": "conceptualize",
303
+ "conceptualised": "conceptualized",
304
+ "conceptualises": "conceptualizes",
305
+ "conceptualising": "conceptualizing",
306
+ "connexion": "connection",
307
+ "connexions": "connections",
308
+ "contextualise": "contextualize",
309
+ "contextualised": "contextualized",
310
+ "contextualises": "contextualizes",
311
+ "contextualising": "contextualizing",
312
+ "cosier": "cozier",
313
+ "cosies": "cozies",
314
+ "cosiest": "coziest",
315
+ "cosily": "cozily",
316
+ "cosiness": "coziness",
317
+ "cosy": "cozy",
318
+ "councillor": "councilor",
319
+ "councillors": "councilors",
320
+ "counselled": "counseled",
321
+ "counselling": "counseling",
322
+ "counsellor": "counselor",
323
+ "counsellors": "counselors",
324
+ "crenelated": "crenellated",
325
+ "criminalise": "criminalize",
326
+ "criminalised": "criminalized",
327
+ "criminalises": "criminalizes",
328
+ "criminalising": "criminalizing",
329
+ "criticise": "criticize",
330
+ "criticised": "criticized",
331
+ "criticises": "criticizes",
332
+ "criticising": "criticizing",
333
+ "crueller": "crueler",
334
+ "cruellest": "cruelest",
335
+ "crystallisation": "crystallization",
336
+ "crystallise": "crystallize",
337
+ "crystallised": "crystallized",
338
+ "crystallises": "crystallizes",
339
+ "crystallising": "crystallizing",
340
+ "cudgelled": "cudgeled",
341
+ "cudgelling": "cudgeling",
342
+ "customise": "customize",
343
+ "customised": "customized",
344
+ "customises": "customizes",
345
+ "customising": "customizing",
346
+ "cypher": "cipher",
347
+ "cyphers": "ciphers",
348
+ "decentralisation": "decentralization",
349
+ "decentralise": "decentralize",
350
+ "decentralised": "decentralized",
351
+ "decentralises": "decentralizes",
352
+ "decentralising": "decentralizing",
353
+ "decriminalisation": "decriminalization",
354
+ "decriminalise": "decriminalize",
355
+ "decriminalised": "decriminalized",
356
+ "decriminalises": "decriminalizes",
357
+ "decriminalising": "decriminalizing",
358
+ "defence": "defense",
359
+ "defenceless": "defenseless",
360
+ "defences": "defenses",
361
+ "dehumanisation": "dehumanization",
362
+ "dehumanise": "dehumanize",
363
+ "dehumanised": "dehumanized",
364
+ "dehumanises": "dehumanizes",
365
+ "dehumanising": "dehumanizing",
366
+ "demeanour": "demeanor",
367
+ "demilitarisation": "demilitarization",
368
+ "demilitarise": "demilitarize",
369
+ "demilitarised": "demilitarized",
370
+ "demilitarises": "demilitarizes",
371
+ "demilitarising": "demilitarizing",
372
+ "demobilisation": "demobilization",
373
+ "demobilise": "demobilize",
374
+ "demobilised": "demobilized",
375
+ "demobilises": "demobilizes",
376
+ "demobilising": "demobilizing",
377
+ "democratisation": "democratization",
378
+ "democratise": "democratize",
379
+ "democratised": "democratized",
380
+ "democratises": "democratizes",
381
+ "democratising": "democratizing",
382
+ "demonise": "demonize",
383
+ "demonised": "demonized",
384
+ "demonises": "demonizes",
385
+ "demonising": "demonizing",
386
+ "demoralisation": "demoralization",
387
+ "demoralise": "demoralize",
388
+ "demoralised": "demoralized",
389
+ "demoralises": "demoralizes",
390
+ "demoralising": "demoralizing",
391
+ "denationalisation": "denationalization",
392
+ "denationalise": "denationalize",
393
+ "denationalised": "denationalized",
394
+ "denationalises": "denationalizes",
395
+ "denationalising": "denationalizing",
396
+ "deodorise": "deodorize",
397
+ "deodorised": "deodorized",
398
+ "deodorises": "deodorizes",
399
+ "deodorising": "deodorizing",
400
+ "depersonalise": "depersonalize",
401
+ "depersonalised": "depersonalized",
402
+ "depersonalises": "depersonalizes",
403
+ "depersonalising": "depersonalizing",
404
+ "deputise": "deputize",
405
+ "deputised": "deputized",
406
+ "deputises": "deputizes",
407
+ "deputising": "deputizing",
408
+ "desensitisation": "desensitization",
409
+ "desensitise": "desensitize",
410
+ "desensitised": "desensitized",
411
+ "desensitises": "desensitizes",
412
+ "desensitising": "desensitizing",
413
+ "destabilisation": "destabilization",
414
+ "destabilise": "destabilize",
415
+ "destabilised": "destabilized",
416
+ "destabilises": "destabilizes",
417
+ "destabilising": "destabilizing",
418
+ "dialled": "dialed",
419
+ "dialling": "dialing",
420
+ "dialogue": "dialog",
421
+ "dialogues": "dialogs",
422
+ "diarrhoea": "diarrhea",
423
+ "digitise": "digitize",
424
+ "digitised": "digitized",
425
+ "digitises": "digitizes",
426
+ "digitising": "digitizing",
427
+ "disc": "disk",
428
+ "discolour": "discolor",
429
+ "discoloured": "discolored",
430
+ "discolouring": "discoloring",
431
+ "discolours": "discolors",
432
+ "discs": "disks",
433
+ "disembowelled": "disemboweled",
434
+ "disembowelling": "disemboweling",
435
+ "disfavour": "disfavor",
436
+ "dishevelled": "disheveled",
437
+ "dishonour": "dishonor",
438
+ "dishonourable": "dishonorable",
439
+ "dishonourably": "dishonorably",
440
+ "dishonoured": "dishonored",
441
+ "dishonouring": "dishonoring",
442
+ "dishonours": "dishonors",
443
+ "disorganisation": "disorganization",
444
+ "disorganised": "disorganized",
445
+ "distil": "distill",
446
+ "distils": "distills",
447
+ "dramatisation": "dramatization",
448
+ "dramatisations": "dramatizations",
449
+ "dramatise": "dramatize",
450
+ "dramatised": "dramatized",
451
+ "dramatises": "dramatizes",
452
+ "dramatising": "dramatizing",
453
+ "draught": "draft",
454
+ "draughtboard": "draftboard",
455
+ "draughtboards": "draftboards",
456
+ "draughtier": "draftier",
457
+ "draughtiest": "draftiest",
458
+ "draughts": "drafts",
459
+ "draughtsman": "draftsman",
460
+ "draughtsmanship": "draftsmanship",
461
+ "draughtsmen": "draftsmen",
462
+ "draughtswoman": "draftswoman",
463
+ "draughtswomen": "draftswomen",
464
+ "draughty": "drafty",
465
+ "drivelled": "driveled",
466
+ "drivelling": "driveling",
467
+ "duelled": "dueled",
468
+ "duelling": "dueling",
469
+ "economise": "economize",
470
+ "economised": "economized",
471
+ "economises": "economizes",
472
+ "economising": "economizing",
473
+ "editorialise": "editorialize",
474
+ "editorialised": "editorialized",
475
+ "editorialises": "editorializes",
476
+ "editorialising": "editorializing",
477
+ "edoema": "edema",
478
+ "empathise": "empathize",
479
+ "empathised": "empathized",
480
+ "empathises": "empathizes",
481
+ "empathising": "empathizing",
482
+ "emphasise": "emphasize",
483
+ "emphasised": "emphasized",
484
+ "emphasises": "emphasizes",
485
+ "emphasising": "emphasizing",
486
+ "enamelled": "enameled",
487
+ "enamelling": "enameling",
488
+ "enamoured": "enamored",
489
+ "encyclopaedia": "encyclopedia",
490
+ "encyclopaedias": "encyclopedias",
491
+ "encyclopaedic": "encyclopedic",
492
+ "endeavour": "endeavor",
493
+ "endeavoured": "endeavored",
494
+ "endeavouring": "endeavoring",
495
+ "endeavours": "endeavors",
496
+ "energise": "energize",
497
+ "energised": "energized",
498
+ "energises": "energizes",
499
+ "energising": "energizing",
500
+ "enrol": "enroll",
501
+ "enrols": "enrolls",
502
+ "enthral": "enthrall",
503
+ "enthrals": "enthralls",
504
+ "epaulette": "epaulet",
505
+ "epaulettes": "epaulets",
506
+ "epicentre": "epicenter",
507
+ "epicentres": "epicenters",
508
+ "epilogue": "epilog",
509
+ "epilogues": "epilogs",
510
+ "epitomise": "epitomize",
511
+ "epitomised": "epitomized",
512
+ "epitomises": "epitomizes",
513
+ "epitomising": "epitomizing",
514
+ "equalisation": "equalization",
515
+ "equalise": "equalize",
516
+ "equalised": "equalized",
517
+ "equaliser": "equalizer",
518
+ "equalisers": "equalizers",
519
+ "equalises": "equalizes",
520
+ "equalising": "equalizing",
521
+ "eulogise": "eulogize",
522
+ "eulogised": "eulogized",
523
+ "eulogises": "eulogizes",
524
+ "eulogising": "eulogizing",
525
+ "evangelise": "evangelize",
526
+ "evangelised": "evangelized",
527
+ "evangelises": "evangelizes",
528
+ "evangelising": "evangelizing",
529
+ "exorcise": "exorcize",
530
+ "exorcised": "exorcized",
531
+ "exorcises": "exorcizes",
532
+ "exorcising": "exorcizing",
533
+ "extemporisation": "extemporization",
534
+ "extemporise": "extemporize",
535
+ "extemporised": "extemporized",
536
+ "extemporises": "extemporizes",
537
+ "extemporising": "extemporizing",
538
+ "externalisation": "externalization",
539
+ "externalisations": "externalizations",
540
+ "externalise": "externalize",
541
+ "externalised": "externalized",
542
+ "externalises": "externalizes",
543
+ "externalising": "externalizing",
544
+ "factorise": "factorize",
545
+ "factorised": "factorized",
546
+ "factorises": "factorizes",
547
+ "factorising": "factorizing",
548
+ "faecal": "fecal",
549
+ "faeces": "feces",
550
+ "familiarisation": "familiarization",
551
+ "familiarise": "familiarize",
552
+ "familiarised": "familiarized",
553
+ "familiarises": "familiarizes",
554
+ "familiarising": "familiarizing",
555
+ "fantasise": "fantasize",
556
+ "fantasised": "fantasized",
557
+ "fantasises": "fantasizes",
558
+ "fantasising": "fantasizing",
559
+ "favour": "favor",
560
+ "favourable": "favorable",
561
+ "favourably": "favorably",
562
+ "favoured": "favored",
563
+ "favouring": "favoring",
564
+ "favourite": "favorite",
565
+ "favourites": "favorites",
566
+ "favouritism": "favoritism",
567
+ "favours": "favors",
568
+ "feminise": "feminize",
569
+ "feminised": "feminized",
570
+ "feminises": "feminizes",
571
+ "feminising": "feminizing",
572
+ "fertilisation": "fertilization",
573
+ "fertilise": "fertilize",
574
+ "fertilised": "fertilized",
575
+ "fertiliser": "fertilizer",
576
+ "fertilisers": "fertilizers",
577
+ "fertilises": "fertilizes",
578
+ "fertilising": "fertilizing",
579
+ "fervour": "fervor",
580
+ "fibre": "fiber",
581
+ "fibreglass": "fiberglass",
582
+ "fibres": "fibers",
583
+ "fictionalisation": "fictionalization",
584
+ "fictionalisations": "fictionalizations",
585
+ "fictionalise": "fictionalize",
586
+ "fictionalised": "fictionalized",
587
+ "fictionalises": "fictionalizes",
588
+ "fictionalising": "fictionalizing",
589
+ "fillet": "filet",
590
+ "filleted": "fileted",
591
+ "filleting": "fileting",
592
+ "fillets": "filets",
593
+ "finalisation": "finalization",
594
+ "finalise": "finalize",
595
+ "finalised": "finalized",
596
+ "finalises": "finalizes",
597
+ "finalising": "finalizing",
598
+ "flautist": "flutist",
599
+ "flautists": "flutists",
600
+ "flavour": "flavor",
601
+ "flavoured": "flavored",
602
+ "flavouring": "flavoring",
603
+ "flavourings": "flavorings",
604
+ "flavourless": "flavorless",
605
+ "flavours": "flavors",
606
+ "flavoursome": "flavorsome",
607
+ "flyer / flier": "flier / flyer",
608
+ "foetal": "fetal",
609
+ "foetid": "fetid",
610
+ "foetus": "fetus",
611
+ "foetuses": "fetuses",
612
+ "formalisation": "formalization",
613
+ "formalise": "formalize",
614
+ "formalised": "formalized",
615
+ "formalises": "formalizes",
616
+ "formalising": "formalizing",
617
+ "fossilisation": "fossilization",
618
+ "fossilise": "fossilize",
619
+ "fossilised": "fossilized",
620
+ "fossilises": "fossilizes",
621
+ "fossilising": "fossilizing",
622
+ "fraternisation": "fraternization",
623
+ "fraternise": "fraternize",
624
+ "fraternised": "fraternized",
625
+ "fraternises": "fraternizes",
626
+ "fraternising": "fraternizing",
627
+ "fulfil": "fulfill",
628
+ "fulfilment": "fulfillment",
629
+ "fulfils": "fulfills",
630
+ "funnelled": "funneled",
631
+ "funnelling": "funneling",
632
+ "gage": "gauge",
633
+ "gaged": "gauged",
634
+ "gages": "gauges",
635
+ "gaging": "gauging",
636
+ "galvanise": "galvanize",
637
+ "galvanised": "galvanized",
638
+ "galvanises": "galvanizes",
639
+ "galvanising": "galvanizing",
640
+ "gambolled": "gamboled",
641
+ "gambolling": "gamboling",
642
+ "gaol": "jail",
643
+ "gaolbird": "jailbird",
644
+ "gaolbirds": "jailbirds",
645
+ "gaolbreak": "jailbreak",
646
+ "gaolbreaks": "jailbreaks",
647
+ "gaoled": "jailed",
648
+ "gaoler": "jailer",
649
+ "gaolers": "jailers",
650
+ "gaoling": "jailing",
651
+ "gaols": "jails",
652
+ "gasses": "gases",
653
+ "generalisation": "generalization",
654
+ "generalisations": "generalizations",
655
+ "generalise": "generalize",
656
+ "generalised": "generalized",
657
+ "generalises": "generalizes",
658
+ "generalising": "generalizing",
659
+ "ghettoise": "ghettoize",
660
+ "ghettoised": "ghettoized",
661
+ "ghettoises": "ghettoizes",
662
+ "ghettoising": "ghettoizing",
663
+ "gipsies": "gypsies",
664
+ "glamor": "glamour",
665
+ "glamorise": "glamorize",
666
+ "glamorised": "glamorized",
667
+ "glamorises": "glamorizes",
668
+ "glamorising": "glamorizing",
669
+ "globalisation": "globalization",
670
+ "globalise": "globalize",
671
+ "globalised": "globalized",
672
+ "globalises": "globalizes",
673
+ "globalising": "globalizing",
674
+ "glueing": "gluing",
675
+ "goitre": "goiter",
676
+ "goitres": "goiters",
677
+ "gonorrhoea": "gonorrhea",
678
+ "gramme": "gram",
679
+ "grammes": "grams",
680
+ "gravelled": "graveled",
681
+ "grey": "gray",
682
+ "greyed": "grayed",
683
+ "greying": "graying",
684
+ "greyish": "grayish",
685
+ "greyness": "grayness",
686
+ "greys": "grays",
687
+ "grovelled": "groveled",
688
+ "grovelling": "groveling",
689
+ "groyne": "groin",
690
+ "groynes": "groins",
691
+ "gruelling": "grueling",
692
+ "gruellingly": "gruelingly",
693
+ "gryphon": "griffin",
694
+ "gryphons": "griffins",
695
+ "gynaecological": "gynecological",
696
+ "gynaecologist": "gynecologist",
697
+ "gynaecologists": "gynecologists",
698
+ "gynaecology": "gynecology",
699
+ "haematological": "hematological",
700
+ "haematologist": "hematologist",
701
+ "haematologists": "hematologists",
702
+ "haematology": "hematology",
703
+ "haemoglobin": "hemoglobin",
704
+ "haemophilia": "hemophilia",
705
+ "haemophiliac": "hemophiliac",
706
+ "haemophiliacs": "hemophiliacs",
707
+ "haemorrhage": "hemorrhage",
708
+ "haemorrhaged": "hemorrhaged",
709
+ "haemorrhages": "hemorrhages",
710
+ "haemorrhaging": "hemorrhaging",
711
+ "haemorrhoids": "hemorrhoids",
712
+ "harbour": "harbor",
713
+ "harboured": "harbored",
714
+ "harbouring": "harboring",
715
+ "harbours": "harbors",
716
+ "harmonisation": "harmonization",
717
+ "harmonise": "harmonize",
718
+ "harmonised": "harmonized",
719
+ "harmonises": "harmonizes",
720
+ "harmonising": "harmonizing",
721
+ "homoeopath": "homeopath",
722
+ "homoeopathic": "homeopathic",
723
+ "homoeopaths": "homeopaths",
724
+ "homoeopathy": "homeopathy",
725
+ "homogenise": "homogenize",
726
+ "homogenised": "homogenized",
727
+ "homogenises": "homogenizes",
728
+ "homogenising": "homogenizing",
729
+ "honour": "honor",
730
+ "honourable": "honorable",
731
+ "honourably": "honorably",
732
+ "honoured": "honored",
733
+ "honouring": "honoring",
734
+ "honours": "honors",
735
+ "hospitalisation": "hospitalization",
736
+ "hospitalise": "hospitalize",
737
+ "hospitalised": "hospitalized",
738
+ "hospitalises": "hospitalizes",
739
+ "hospitalising": "hospitalizing",
740
+ "humanise": "humanize",
741
+ "humanised": "humanized",
742
+ "humanises": "humanizes",
743
+ "humanising": "humanizing",
744
+ "humour": "humor",
745
+ "humoured": "humored",
746
+ "humouring": "humoring",
747
+ "humourless": "humorless",
748
+ "humours": "humors",
749
+ "hybridise": "hybridize",
750
+ "hybridised": "hybridized",
751
+ "hybridises": "hybridizes",
752
+ "hybridising": "hybridizing",
753
+ "hypnotise": "hypnotize",
754
+ "hypnotised": "hypnotized",
755
+ "hypnotises": "hypnotizes",
756
+ "hypnotising": "hypnotizing",
757
+ "hypothesise": "hypothesize",
758
+ "hypothesised": "hypothesized",
759
+ "hypothesises": "hypothesizes",
760
+ "hypothesising": "hypothesizing",
761
+ "idealisation": "idealization",
762
+ "idealise": "idealize",
763
+ "idealised": "idealized",
764
+ "idealises": "idealizes",
765
+ "idealising": "idealizing",
766
+ "idolise": "idolize",
767
+ "idolised": "idolized",
768
+ "idolises": "idolizes",
769
+ "idolising": "idolizing",
770
+ "immobilisation": "immobilization",
771
+ "immobilise": "immobilize",
772
+ "immobilised": "immobilized",
773
+ "immobiliser": "immobilizer",
774
+ "immobilisers": "immobilizers",
775
+ "immobilises": "immobilizes",
776
+ "immobilising": "immobilizing",
777
+ "immortalise": "immortalize",
778
+ "immortalised": "immortalized",
779
+ "immortalises": "immortalizes",
780
+ "immortalising": "immortalizing",
781
+ "immunisation": "immunization",
782
+ "immunise": "immunize",
783
+ "immunised": "immunized",
784
+ "immunises": "immunizes",
785
+ "immunising": "immunizing",
786
+ "impanelled": "impaneled",
787
+ "impanelling": "impaneling",
788
+ "imperilled": "imperiled",
789
+ "imperilling": "imperiling",
790
+ "individualise": "individualize",
791
+ "individualised": "individualized",
792
+ "individualises": "individualizes",
793
+ "individualising": "individualizing",
794
+ "industrialise": "industrialize",
795
+ "industrialised": "industrialized",
796
+ "industrialises": "industrializes",
797
+ "industrialising": "industrializing",
798
+ "inflexion": "inflection",
799
+ "inflexions": "inflections",
800
+ "initialise": "initialize",
801
+ "initialised": "initialized",
802
+ "initialises": "initializes",
803
+ "initialising": "initializing",
804
+ "initialled": "initialed",
805
+ "initialling": "initialing",
806
+ "instal": "install",
807
+ "instalment": "installment",
808
+ "instalments": "installments",
809
+ "instals": "installs",
810
+ "instil": "instill",
811
+ "instils": "instills",
812
+ "institutionalisation": "institutionalization",
813
+ "institutionalise": "institutionalize",
814
+ "institutionalised": "institutionalized",
815
+ "institutionalises": "institutionalizes",
816
+ "institutionalising": "institutionalizing",
817
+ "intellectualise": "intellectualize",
818
+ "intellectualised": "intellectualized",
819
+ "intellectualises": "intellectualizes",
820
+ "intellectualising": "intellectualizing",
821
+ "internalisation": "internalization",
822
+ "internalise": "internalize",
823
+ "internalised": "internalized",
824
+ "internalises": "internalizes",
825
+ "internalising": "internalizing",
826
+ "internationalisation": "internationalization",
827
+ "internationalise": "internationalize",
828
+ "internationalised": "internationalized",
829
+ "internationalises": "internationalizes",
830
+ "internationalising": "internationalizing",
831
+ "ionisation": "ionization",
832
+ "ionise": "ionize",
833
+ "ionised": "ionized",
834
+ "ioniser": "ionizer",
835
+ "ionisers": "ionizers",
836
+ "ionises": "ionizes",
837
+ "ionising": "ionizing",
838
+ "italicise": "italicize",
839
+ "italicised": "italicized",
840
+ "italicises": "italicizes",
841
+ "italicising": "italicizing",
842
+ "itemise": "itemize",
843
+ "itemised": "itemized",
844
+ "itemises": "itemizes",
845
+ "itemising": "itemizing",
846
+ "jeopardise": "jeopardize",
847
+ "jeopardised": "jeopardized",
848
+ "jeopardises": "jeopardizes",
849
+ "jeopardising": "jeopardizing",
850
+ "jewelled": "jeweled",
851
+ "jeweller": "jeweler",
852
+ "jewellers": "jewelers",
853
+ "jewellery": "jewelry",
854
+ "judgement": "judgment",
855
+ "kilogramme": "kilogram",
856
+ "kilogrammes": "kilograms",
857
+ "kilometre": "kilometer",
858
+ "kilometres": "kilometers",
859
+ "labelled": "labeled",
860
+ "labelling": "labeling",
861
+ "labour": "labor",
862
+ "laboured": "labored",
863
+ "labourer": "laborer",
864
+ "labourers": "laborers",
865
+ "labouring": "laboring",
866
+ "labours": "labors",
867
+ "lacklustre": "lackluster",
868
+ "legalisation": "legalization",
869
+ "legalise": "legalize",
870
+ "legalised": "legalized",
871
+ "legalises": "legalizes",
872
+ "legalising": "legalizing",
873
+ "legitimise": "legitimize",
874
+ "legitimised": "legitimized",
875
+ "legitimises": "legitimizes",
876
+ "legitimising": "legitimizing",
877
+ "leukaemia": "leukemia",
878
+ "levelled": "leveled",
879
+ "leveller": "leveler",
880
+ "levellers": "levelers",
881
+ "levelling": "leveling",
882
+ "libelled": "libeled",
883
+ "libelling": "libeling",
884
+ "libellous": "libelous",
885
+ "liberalisation": "liberalization",
886
+ "liberalise": "liberalize",
887
+ "liberalised": "liberalized",
888
+ "liberalises": "liberalizes",
889
+ "liberalising": "liberalizing",
890
+ "licence": "license",
891
+ "licenced": "licensed",
892
+ "licences": "licenses",
893
+ "licencing": "licensing",
894
+ "likeable": "likable",
895
+ "lionisation": "lionization",
896
+ "lionise": "lionize",
897
+ "lionised": "lionized",
898
+ "lionises": "lionizes",
899
+ "lionising": "lionizing",
900
+ "liquidise": "liquidize",
901
+ "liquidised": "liquidized",
902
+ "liquidiser": "liquidizer",
903
+ "liquidisers": "liquidizers",
904
+ "liquidises": "liquidizes",
905
+ "liquidising": "liquidizing",
906
+ "litre": "liter",
907
+ "litres": "liters",
908
+ "localise": "localize",
909
+ "localised": "localized",
910
+ "localises": "localizes",
911
+ "localising": "localizing",
912
+ "louvre": "louver",
913
+ "louvred": "louvered",
914
+ "louvres": "louvers",
915
+ "lustre": "luster",
916
+ "magnetise": "magnetize",
917
+ "magnetised": "magnetized",
918
+ "magnetises": "magnetizes",
919
+ "magnetising": "magnetizing",
920
+ "manoeuvrability": "maneuverability",
921
+ "manoeuvrable": "maneuverable",
922
+ "manoeuvre": "maneuver",
923
+ "manoeuvred": "maneuvered",
924
+ "manoeuvres": "maneuvers",
925
+ "manoeuvring": "maneuvering",
926
+ "manoeuvrings": "maneuverings",
927
+ "marginalisation": "marginalization",
928
+ "marginalise": "marginalize",
929
+ "marginalised": "marginalized",
930
+ "marginalises": "marginalizes",
931
+ "marginalising": "marginalizing",
932
+ "marshalled": "marshaled",
933
+ "marshalling": "marshaling",
934
+ "marvelled": "marveled",
935
+ "marvelling": "marveling",
936
+ "marvellous": "marvelous",
937
+ "marvellously": "marvelously",
938
+ "materialisation": "materialization",
939
+ "materialise": "materialize",
940
+ "materialised": "materialized",
941
+ "materialises": "materializes",
942
+ "materialising": "materializing",
943
+ "maximisation": "maximization",
944
+ "maximise": "maximize",
945
+ "maximised": "maximized",
946
+ "maximises": "maximizes",
947
+ "maximising": "maximizing",
948
+ "meagre": "meager",
949
+ "mechanisation": "mechanization",
950
+ "mechanise": "mechanize",
951
+ "mechanised": "mechanized",
952
+ "mechanises": "mechanizes",
953
+ "mechanising": "mechanizing",
954
+ "mediaeval": "medieval",
955
+ "memorialise": "memorialize",
956
+ "memorialised": "memorialized",
957
+ "memorialises": "memorializes",
958
+ "memorialising": "memorializing",
959
+ "memorise": "memorize",
960
+ "memorised": "memorized",
961
+ "memorises": "memorizes",
962
+ "memorising": "memorizing",
963
+ "mesmerise": "mesmerize",
964
+ "mesmerised": "mesmerized",
965
+ "mesmerises": "mesmerizes",
966
+ "mesmerising": "mesmerizing",
967
+ "metabolise": "metabolize",
968
+ "metabolised": "metabolized",
969
+ "metabolises": "metabolizes",
970
+ "metabolising": "metabolizing",
971
+ "metre": "meter",
972
+ "metres": "meters",
973
+ "mhm": "hmm",
974
+ "micrometre": "micrometer",
975
+ "micrometres": "micrometers",
976
+ "militarise": "militarize",
977
+ "militarised": "militarized",
978
+ "militarises": "militarizes",
979
+ "militarising": "militarizing",
980
+ "milligramme": "milligram",
981
+ "milligrammes": "milligrams",
982
+ "millilitre": "milliliter",
983
+ "millilitres": "milliliters",
984
+ "millimetre": "millimeter",
985
+ "millimetres": "millimeters",
986
+ "miniaturisation": "miniaturization",
987
+ "miniaturise": "miniaturize",
988
+ "miniaturised": "miniaturized",
989
+ "miniaturises": "miniaturizes",
990
+ "miniaturising": "miniaturizing",
991
+ "minibusses": "minibuses",
992
+ "minimise": "minimize",
993
+ "minimised": "minimized",
994
+ "minimises": "minimizes",
995
+ "minimising": "minimizing",
996
+ "misbehaviour": "misbehavior",
997
+ "misdemeanour": "misdemeanor",
998
+ "misdemeanours": "misdemeanors",
999
+ "misspelt": "misspelled",
1000
+ "mitre": "miter",
1001
+ "mitres": "miters",
1002
+ "mm": "hmm",
1003
+ "mmm": "hmm",
1004
+ "mobilisation": "mobilization",
1005
+ "mobilise": "mobilize",
1006
+ "mobilised": "mobilized",
1007
+ "mobilises": "mobilizes",
1008
+ "mobilising": "mobilizing",
1009
+ "modelled": "modeled",
1010
+ "modeller": "modeler",
1011
+ "modellers": "modelers",
1012
+ "modelling": "modeling",
1013
+ "modernise": "modernize",
1014
+ "modernised": "modernized",
1015
+ "modernises": "modernizes",
1016
+ "modernising": "modernizing",
1017
+ "moisturise": "moisturize",
1018
+ "moisturised": "moisturized",
1019
+ "moisturiser": "moisturizer",
1020
+ "moisturisers": "moisturizers",
1021
+ "moisturises": "moisturizes",
1022
+ "moisturising": "moisturizing",
1023
+ "monologue": "monolog",
1024
+ "monologues": "monologs",
1025
+ "monopolisation": "monopolization",
1026
+ "monopolise": "monopolize",
1027
+ "monopolised": "monopolized",
1028
+ "monopolises": "monopolizes",
1029
+ "monopolising": "monopolizing",
1030
+ "moralise": "moralize",
1031
+ "moralised": "moralized",
1032
+ "moralises": "moralizes",
1033
+ "moralising": "moralizing",
1034
+ "motorised": "motorized",
1035
+ "mould": "mold",
1036
+ "moulded": "molded",
1037
+ "moulder": "molder",
1038
+ "mouldered": "moldered",
1039
+ "mouldering": "moldering",
1040
+ "moulders": "molders",
1041
+ "mouldier": "moldier",
1042
+ "mouldiest": "moldiest",
1043
+ "moulding": "molding",
1044
+ "mouldings": "moldings",
1045
+ "moulds": "molds",
1046
+ "mouldy": "moldy",
1047
+ "moult": "molt",
1048
+ "moulted": "molted",
1049
+ "moulting": "molting",
1050
+ "moults": "molts",
1051
+ "moustache": "mustache",
1052
+ "moustached": "mustached",
1053
+ "moustaches": "mustaches",
1054
+ "moustachioed": "mustachioed",
1055
+ "multicoloured": "multicolored",
1056
+ "nationalisation": "nationalization",
1057
+ "nationalisations": "nationalizations",
1058
+ "nationalise": "nationalize",
1059
+ "nationalised": "nationalized",
1060
+ "nationalises": "nationalizes",
1061
+ "nationalising": "nationalizing",
1062
+ "naturalisation": "naturalization",
1063
+ "naturalise": "naturalize",
1064
+ "naturalised": "naturalized",
1065
+ "naturalises": "naturalizes",
1066
+ "naturalising": "naturalizing",
1067
+ "neighbour": "neighbor",
1068
+ "neighbourhood": "neighborhood",
1069
+ "neighbourhoods": "neighborhoods",
1070
+ "neighbouring": "neighboring",
1071
+ "neighbourliness": "neighborliness",
1072
+ "neighbourly": "neighborly",
1073
+ "neighbours": "neighbors",
1074
+ "neutralisation": "neutralization",
1075
+ "neutralise": "neutralize",
1076
+ "neutralised": "neutralized",
1077
+ "neutralises": "neutralizes",
1078
+ "neutralising": "neutralizing",
1079
+ "normalisation": "normalization",
1080
+ "normalise": "normalize",
1081
+ "normalised": "normalized",
1082
+ "normalises": "normalizes",
1083
+ "normalising": "normalizing",
1084
+ "odour": "odor",
1085
+ "odourless": "odorless",
1086
+ "odours": "odors",
1087
+ "oesophagus": "esophagus",
1088
+ "oesophaguses": "esophaguses",
1089
+ "oestrogen": "estrogen",
1090
+ "offence": "offense",
1091
+ "offences": "offenses",
1092
+ "omelette": "omelet",
1093
+ "omelettes": "omelets",
1094
+ "optimise": "optimize",
1095
+ "optimised": "optimized",
1096
+ "optimises": "optimizes",
1097
+ "optimising": "optimizing",
1098
+ "organisation": "organization",
1099
+ "organisational": "organizational",
1100
+ "organisations": "organizations",
1101
+ "organise": "organize",
1102
+ "organised": "organized",
1103
+ "organiser": "organizer",
1104
+ "organisers": "organizers",
1105
+ "organises": "organizes",
1106
+ "organising": "organizing",
1107
+ "orthopaedic": "orthopedic",
1108
+ "orthopaedics": "orthopedics",
1109
+ "ostracise": "ostracize",
1110
+ "ostracised": "ostracized",
1111
+ "ostracises": "ostracizes",
1112
+ "ostracising": "ostracizing",
1113
+ "outmanoeuvre": "outmaneuver",
1114
+ "outmanoeuvred": "outmaneuvered",
1115
+ "outmanoeuvres": "outmaneuvers",
1116
+ "outmanoeuvring": "outmaneuvering",
1117
+ "overemphasise": "overemphasize",
1118
+ "overemphasised": "overemphasized",
1119
+ "overemphasises": "overemphasizes",
1120
+ "overemphasising": "overemphasizing",
1121
+ "oxidisation": "oxidization",
1122
+ "oxidise": "oxidize",
1123
+ "oxidised": "oxidized",
1124
+ "oxidises": "oxidizes",
1125
+ "oxidising": "oxidizing",
1126
+ "paederast": "pederast",
1127
+ "paederasts": "pederasts",
1128
+ "paediatric": "pediatric",
1129
+ "paediatrician": "pediatrician",
1130
+ "paediatricians": "pediatricians",
1131
+ "paediatrics": "pediatrics",
1132
+ "paedophile": "pedophile",
1133
+ "paedophiles": "pedophiles",
1134
+ "paedophilia": "pedophilia",
1135
+ "palaeolithic": "paleolithic",
1136
+ "palaeontologist": "paleontologist",
1137
+ "palaeontologists": "paleontologists",
1138
+ "palaeontology": "paleontology",
1139
+ "panelled": "paneled",
1140
+ "panelling": "paneling",
1141
+ "panellist": "panelist",
1142
+ "panellists": "panelists",
1143
+ "paralyse": "paralyze",
1144
+ "paralysed": "paralyzed",
1145
+ "paralyses": "paralyzes",
1146
+ "paralysing": "paralyzing",
1147
+ "parcelled": "parceled",
1148
+ "parcelling": "parceling",
1149
+ "parlour": "parlor",
1150
+ "parlours": "parlors",
1151
+ "particularise": "particularize",
1152
+ "particularised": "particularized",
1153
+ "particularises": "particularizes",
1154
+ "particularising": "particularizing",
1155
+ "passivisation": "passivization",
1156
+ "passivise": "passivize",
1157
+ "passivised": "passivized",
1158
+ "passivises": "passivizes",
1159
+ "passivising": "passivizing",
1160
+ "pasteurisation": "pasteurization",
1161
+ "pasteurise": "pasteurize",
1162
+ "pasteurised": "pasteurized",
1163
+ "pasteurises": "pasteurizes",
1164
+ "pasteurising": "pasteurizing",
1165
+ "patronise": "patronize",
1166
+ "patronised": "patronized",
1167
+ "patronises": "patronizes",
1168
+ "patronising": "patronizing",
1169
+ "patronisingly": "patronizingly",
1170
+ "pedalled": "pedaled",
1171
+ "pedalling": "pedaling",
1172
+ "pedestrianisation": "pedestrianization",
1173
+ "pedestrianise": "pedestrianize",
1174
+ "pedestrianised": "pedestrianized",
1175
+ "pedestrianises": "pedestrianizes",
1176
+ "pedestrianising": "pedestrianizing",
1177
+ "penalise": "penalize",
1178
+ "penalised": "penalized",
1179
+ "penalises": "penalizes",
1180
+ "penalising": "penalizing",
1181
+ "pencilled": "penciled",
1182
+ "pencilling": "penciling",
1183
+ "personalise": "personalize",
1184
+ "personalised": "personalized",
1185
+ "personalises": "personalizes",
1186
+ "personalising": "personalizing",
1187
+ "pharmacopoeia": "pharmacopeia",
1188
+ "pharmacopoeias": "pharmacopeias",
1189
+ "philosophise": "philosophize",
1190
+ "philosophised": "philosophized",
1191
+ "philosophises": "philosophizes",
1192
+ "philosophising": "philosophizing",
1193
+ "philtre": "filter",
1194
+ "philtres": "filters",
1195
+ "phoney": "phony",
1196
+ "plagiarise": "plagiarize",
1197
+ "plagiarised": "plagiarized",
1198
+ "plagiarises": "plagiarizes",
1199
+ "plagiarising": "plagiarizing",
1200
+ "plough": "plow",
1201
+ "ploughed": "plowed",
1202
+ "ploughing": "plowing",
1203
+ "ploughman": "plowman",
1204
+ "ploughmen": "plowmen",
1205
+ "ploughs": "plows",
1206
+ "ploughshare": "plowshare",
1207
+ "ploughshares": "plowshares",
1208
+ "polarisation": "polarization",
1209
+ "polarise": "polarize",
1210
+ "polarised": "polarized",
1211
+ "polarises": "polarizes",
1212
+ "polarising": "polarizing",
1213
+ "politicisation": "politicization",
1214
+ "politicise": "politicize",
1215
+ "politicised": "politicized",
1216
+ "politicises": "politicizes",
1217
+ "politicising": "politicizing",
1218
+ "popularisation": "popularization",
1219
+ "popularise": "popularize",
1220
+ "popularised": "popularized",
1221
+ "popularises": "popularizes",
1222
+ "popularising": "popularizing",
1223
+ "pouffe": "pouf",
1224
+ "pouffes": "poufs",
1225
+ "practise": "practice",
1226
+ "practised": "practiced",
1227
+ "practises": "practices",
1228
+ "practising": "practicing",
1229
+ "praesidium": "presidium",
1230
+ "praesidiums": "presidiums",
1231
+ "pressurisation": "pressurization",
1232
+ "pressurise": "pressurize",
1233
+ "pressurised": "pressurized",
1234
+ "pressurises": "pressurizes",
1235
+ "pressurising": "pressurizing",
1236
+ "pretence": "pretense",
1237
+ "pretences": "pretenses",
1238
+ "primaeval": "primeval",
1239
+ "prioritisation": "prioritization",
1240
+ "prioritise": "prioritize",
1241
+ "prioritised": "prioritized",
1242
+ "prioritises": "prioritizes",
1243
+ "prioritising": "prioritizing",
1244
+ "privatisation": "privatization",
1245
+ "privatisations": "privatizations",
1246
+ "privatise": "privatize",
1247
+ "privatised": "privatized",
1248
+ "privatises": "privatizes",
1249
+ "privatising": "privatizing",
1250
+ "professionalisation": "professionalization",
1251
+ "professionalise": "professionalize",
1252
+ "professionalised": "professionalized",
1253
+ "professionalises": "professionalizes",
1254
+ "professionalising": "professionalizing",
1255
+ "programme": "program",
1256
+ "programmes": "programs",
1257
+ "prologue": "prolog",
1258
+ "prologues": "prologs",
1259
+ "propagandise": "propagandize",
1260
+ "propagandised": "propagandized",
1261
+ "propagandises": "propagandizes",
1262
+ "propagandising": "propagandizing",
1263
+ "proselytise": "proselytize",
1264
+ "proselytised": "proselytized",
1265
+ "proselytiser": "proselytizer",
1266
+ "proselytisers": "proselytizers",
1267
+ "proselytises": "proselytizes",
1268
+ "proselytising": "proselytizing",
1269
+ "psychoanalyse": "psychoanalyze",
1270
+ "psychoanalysed": "psychoanalyzed",
1271
+ "psychoanalyses": "psychoanalyzes",
1272
+ "psychoanalysing": "psychoanalyzing",
1273
+ "publicise": "publicize",
1274
+ "publicised": "publicized",
1275
+ "publicises": "publicizes",
1276
+ "publicising": "publicizing",
1277
+ "pulverisation": "pulverization",
1278
+ "pulverise": "pulverize",
1279
+ "pulverised": "pulverized",
1280
+ "pulverises": "pulverizes",
1281
+ "pulverising": "pulverizing",
1282
+ "pummelled": "pummel",
1283
+ "pummelling": "pummeled",
1284
+ "pyjama": "pajama",
1285
+ "pyjamas": "pajamas",
1286
+ "pzazz": "pizzazz",
1287
+ "quarrelled": "quarreled",
1288
+ "quarrelling": "quarreling",
1289
+ "radicalise": "radicalize",
1290
+ "radicalised": "radicalized",
1291
+ "radicalises": "radicalizes",
1292
+ "radicalising": "radicalizing",
1293
+ "rancour": "rancor",
1294
+ "randomise": "randomize",
1295
+ "randomised": "randomized",
1296
+ "randomises": "randomizes",
1297
+ "randomising": "randomizing",
1298
+ "rationalisation": "rationalization",
1299
+ "rationalisations": "rationalizations",
1300
+ "rationalise": "rationalize",
1301
+ "rationalised": "rationalized",
1302
+ "rationalises": "rationalizes",
1303
+ "rationalising": "rationalizing",
1304
+ "ravelled": "raveled",
1305
+ "ravelling": "raveling",
1306
+ "realisable": "realizable",
1307
+ "realisation": "realization",
1308
+ "realisations": "realizations",
1309
+ "realise": "realize",
1310
+ "realised": "realized",
1311
+ "realises": "realizes",
1312
+ "realising": "realizing",
1313
+ "recognisable": "recognizable",
1314
+ "recognisably": "recognizably",
1315
+ "recognisance": "recognizance",
1316
+ "recognise": "recognize",
1317
+ "recognised": "recognized",
1318
+ "recognises": "recognizes",
1319
+ "recognising": "recognizing",
1320
+ "reconnoitre": "reconnoiter",
1321
+ "reconnoitred": "reconnoitered",
1322
+ "reconnoitres": "reconnoiters",
1323
+ "reconnoitring": "reconnoitering",
1324
+ "refuelled": "refueled",
1325
+ "refuelling": "refueling",
1326
+ "regularisation": "regularization",
1327
+ "regularise": "regularize",
1328
+ "regularised": "regularized",
1329
+ "regularises": "regularizes",
1330
+ "regularising": "regularizing",
1331
+ "remodelled": "remodeled",
1332
+ "remodelling": "remodeling",
1333
+ "remould": "remold",
1334
+ "remoulded": "remolded",
1335
+ "remoulding": "remolding",
1336
+ "remoulds": "remolds",
1337
+ "reorganisation": "reorganization",
1338
+ "reorganisations": "reorganizations",
1339
+ "reorganise": "reorganize",
1340
+ "reorganised": "reorganized",
1341
+ "reorganises": "reorganizes",
1342
+ "reorganising": "reorganizing",
1343
+ "revelled": "reveled",
1344
+ "reveller": "reveler",
1345
+ "revellers": "revelers",
1346
+ "revelling": "reveling",
1347
+ "revitalise": "revitalize",
1348
+ "revitalised": "revitalized",
1349
+ "revitalises": "revitalizes",
1350
+ "revitalising": "revitalizing",
1351
+ "revolutionise": "revolutionize",
1352
+ "revolutionised": "revolutionized",
1353
+ "revolutionises": "revolutionizes",
1354
+ "revolutionising": "revolutionizing",
1355
+ "rhapsodise": "rhapsodize",
1356
+ "rhapsodised": "rhapsodized",
1357
+ "rhapsodises": "rhapsodizes",
1358
+ "rhapsodising": "rhapsodizing",
1359
+ "rigour": "rigor",
1360
+ "rigours": "rigors",
1361
+ "ritualised": "ritualized",
1362
+ "rivalled": "rivaled",
1363
+ "rivalling": "rivaling",
1364
+ "romanticise": "romanticize",
1365
+ "romanticised": "romanticized",
1366
+ "romanticises": "romanticizes",
1367
+ "romanticising": "romanticizing",
1368
+ "rumour": "rumor",
1369
+ "rumoured": "rumored",
1370
+ "rumours": "rumors",
1371
+ "sabre": "saber",
1372
+ "sabres": "sabers",
1373
+ "saltpetre": "saltpeter",
1374
+ "sanitise": "sanitize",
1375
+ "sanitised": "sanitized",
1376
+ "sanitises": "sanitizes",
1377
+ "sanitising": "sanitizing",
1378
+ "satirise": "satirize",
1379
+ "satirised": "satirized",
1380
+ "satirises": "satirizes",
1381
+ "satirising": "satirizing",
1382
+ "saviour": "savior",
1383
+ "saviours": "saviors",
1384
+ "savour": "savor",
1385
+ "savoured": "savored",
1386
+ "savouries": "savories",
1387
+ "savouring": "savoring",
1388
+ "savours": "savors",
1389
+ "savoury": "savory",
1390
+ "scandalise": "scandalize",
1391
+ "scandalised": "scandalized",
1392
+ "scandalises": "scandalizes",
1393
+ "scandalising": "scandalizing",
1394
+ "sceptic": "skeptic",
1395
+ "sceptical": "skeptical",
1396
+ "sceptically": "skeptically",
1397
+ "scepticism": "skepticism",
1398
+ "sceptics": "skeptics",
1399
+ "sceptre": "scepter",
1400
+ "sceptres": "scepters",
1401
+ "scrutinise": "scrutinize",
1402
+ "scrutinised": "scrutinized",
1403
+ "scrutinises": "scrutinizes",
1404
+ "scrutinising": "scrutinizing",
1405
+ "secularisation": "secularization",
1406
+ "secularise": "secularize",
1407
+ "secularised": "secularized",
1408
+ "secularises": "secularizes",
1409
+ "secularising": "secularizing",
1410
+ "sensationalise": "sensationalize",
1411
+ "sensationalised": "sensationalized",
1412
+ "sensationalises": "sensationalizes",
1413
+ "sensationalising": "sensationalizing",
1414
+ "sensitise": "sensitize",
1415
+ "sensitised": "sensitized",
1416
+ "sensitises": "sensitizes",
1417
+ "sensitising": "sensitizing",
1418
+ "sentimentalise": "sentimentalize",
1419
+ "sentimentalised": "sentimentalized",
1420
+ "sentimentalises": "sentimentalizes",
1421
+ "sentimentalising": "sentimentalizing",
1422
+ "sepulchre": "sepulcher",
1423
+ "sepulchres": "sepulchers",
1424
+ "serialisation": "serialization",
1425
+ "serialisations": "serializations",
1426
+ "serialise": "serialize",
1427
+ "serialised": "serialized",
1428
+ "serialises": "serializes",
1429
+ "serialising": "serializing",
1430
+ "sermonise": "sermonize",
1431
+ "sermonised": "sermonized",
1432
+ "sermonises": "sermonizes",
1433
+ "sermonising": "sermonizing",
1434
+ "sheikh": "sheik",
1435
+ "shovelled": "shoveled",
1436
+ "shovelling": "shoveling",
1437
+ "shrivelled": "shriveled",
1438
+ "shrivelling": "shriveling",
1439
+ "signalise": "signalize",
1440
+ "signalised": "signalized",
1441
+ "signalises": "signalizes",
1442
+ "signalising": "signalizing",
1443
+ "signalled": "signaled",
1444
+ "signalling": "signaling",
1445
+ "smoulder": "smolder",
1446
+ "smouldered": "smoldered",
1447
+ "smouldering": "smoldering",
1448
+ "smoulders": "smolders",
1449
+ "snivelled": "sniveled",
1450
+ "snivelling": "sniveling",
1451
+ "snorkelled": "snorkeled",
1452
+ "snorkelling": "snorkeling",
1453
+ "snowplough": "snowplow",
1454
+ "snowploughs": "snowplow",
1455
+ "socialisation": "socialization",
1456
+ "socialise": "socialize",
1457
+ "socialised": "socialized",
1458
+ "socialises": "socializes",
1459
+ "socialising": "socializing",
1460
+ "sodomise": "sodomize",
1461
+ "sodomised": "sodomized",
1462
+ "sodomises": "sodomizes",
1463
+ "sodomising": "sodomizing",
1464
+ "solemnise": "solemnize",
1465
+ "solemnised": "solemnized",
1466
+ "solemnises": "solemnizes",
1467
+ "solemnising": "solemnizing",
1468
+ "sombre": "somber",
1469
+ "specialisation": "specialization",
1470
+ "specialisations": "specializations",
1471
+ "specialise": "specialize",
1472
+ "specialised": "specialized",
1473
+ "specialises": "specializes",
1474
+ "specialising": "specializing",
1475
+ "spectre": "specter",
1476
+ "spectres": "specters",
1477
+ "spiralled": "spiraled",
1478
+ "spiralling": "spiraling",
1479
+ "splendour": "splendor",
1480
+ "splendours": "splendors",
1481
+ "squirrelled": "squirreled",
1482
+ "squirrelling": "squirreling",
1483
+ "stabilisation": "stabilization",
1484
+ "stabilise": "stabilize",
1485
+ "stabilised": "stabilized",
1486
+ "stabiliser": "stabilizer",
1487
+ "stabilisers": "stabilizers",
1488
+ "stabilises": "stabilizes",
1489
+ "stabilising": "stabilizing",
1490
+ "standardisation": "standardization",
1491
+ "standardise": "standardize",
1492
+ "standardised": "standardized",
1493
+ "standardises": "standardizes",
1494
+ "standardising": "standardizing",
1495
+ "stencilled": "stenciled",
1496
+ "stencilling": "stenciling",
1497
+ "sterilisation": "sterilization",
1498
+ "sterilisations": "sterilizations",
1499
+ "sterilise": "sterilize",
1500
+ "sterilised": "sterilized",
1501
+ "steriliser": "sterilizer",
1502
+ "sterilisers": "sterilizers",
1503
+ "sterilises": "sterilizes",
1504
+ "sterilising": "sterilizing",
1505
+ "stigmatisation": "stigmatization",
1506
+ "stigmatise": "stigmatize",
1507
+ "stigmatised": "stigmatized",
1508
+ "stigmatises": "stigmatizes",
1509
+ "stigmatising": "stigmatizing",
1510
+ "storey": "story",
1511
+ "storeys": "stories",
1512
+ "subsidisation": "subsidization",
1513
+ "subsidise": "subsidize",
1514
+ "subsidised": "subsidized",
1515
+ "subsidiser": "subsidizer",
1516
+ "subsidisers": "subsidizers",
1517
+ "subsidises": "subsidizes",
1518
+ "subsidising": "subsidizing",
1519
+ "succour": "succor",
1520
+ "succoured": "succored",
1521
+ "succouring": "succoring",
1522
+ "succours": "succors",
1523
+ "sulphate": "sulfate",
1524
+ "sulphates": "sulfates",
1525
+ "sulphide": "sulfide",
1526
+ "sulphides": "sulfides",
1527
+ "sulphur": "sulfur",
1528
+ "sulphurous": "sulfurous",
1529
+ "summarise": "summarize",
1530
+ "summarised": "summarized",
1531
+ "summarises": "summarizes",
1532
+ "summarising": "summarizing",
1533
+ "swivelled": "swiveled",
1534
+ "swivelling": "swiveling",
1535
+ "symbolise": "symbolize",
1536
+ "symbolised": "symbolized",
1537
+ "symbolises": "symbolizes",
1538
+ "symbolising": "symbolizing",
1539
+ "sympathise": "sympathize",
1540
+ "sympathised": "sympathized",
1541
+ "sympathiser": "sympathizer",
1542
+ "sympathisers": "sympathizers",
1543
+ "sympathises": "sympathizes",
1544
+ "sympathising": "sympathizing",
1545
+ "synchronisation": "synchronization",
1546
+ "synchronise": "synchronize",
1547
+ "synchronised": "synchronized",
1548
+ "synchronises": "synchronizes",
1549
+ "synchronising": "synchronizing",
1550
+ "synthesise": "synthesize",
1551
+ "synthesised": "synthesized",
1552
+ "synthesiser": "synthesizer",
1553
+ "synthesisers": "synthesizers",
1554
+ "synthesises": "synthesizes",
1555
+ "synthesising": "synthesizing",
1556
+ "syphon": "siphon",
1557
+ "syphoned": "siphoned",
1558
+ "syphoning": "siphoning",
1559
+ "syphons": "siphons",
1560
+ "systematisation": "systematization",
1561
+ "systematise": "systematize",
1562
+ "systematised": "systematized",
1563
+ "systematises": "systematizes",
1564
+ "systematising": "systematizing",
1565
+ "tantalise": "tantalize",
1566
+ "tantalised": "tantalized",
1567
+ "tantalises": "tantalizes",
1568
+ "tantalising": "tantalizing",
1569
+ "tantalisingly": "tantalizingly",
1570
+ "tasselled": "tasseled",
1571
+ "technicolour": "technicolor",
1572
+ "temporise": "temporize",
1573
+ "temporised": "temporized",
1574
+ "temporises": "temporizes",
1575
+ "temporising": "temporizing",
1576
+ "tenderise": "tenderize",
1577
+ "tenderised": "tenderized",
1578
+ "tenderises": "tenderizes",
1579
+ "tenderising": "tenderizing",
1580
+ "terrorise": "terrorize",
1581
+ "terrorised": "terrorized",
1582
+ "terrorises": "terrorizes",
1583
+ "terrorising": "terrorizing",
1584
+ "theatre": "theater",
1585
+ "theatregoer": "theatergoer",
1586
+ "theatregoers": "theatergoers",
1587
+ "theatres": "theaters",
1588
+ "theorise": "theorize",
1589
+ "theorised": "theorized",
1590
+ "theorises": "theorizes",
1591
+ "theorising": "theorizing",
1592
+ "tonne": "ton",
1593
+ "tonnes": "tons",
1594
+ "towelled": "toweled",
1595
+ "towelling": "toweling",
1596
+ "toxaemia": "toxemia",
1597
+ "tranquillise": "tranquilize",
1598
+ "tranquillised": "tranquilized",
1599
+ "tranquilliser": "tranquilizer",
1600
+ "tranquillisers": "tranquilizers",
1601
+ "tranquillises": "tranquilizes",
1602
+ "tranquillising": "tranquilizing",
1603
+ "tranquillity": "tranquility",
1604
+ "tranquillize": "tranquilize",
1605
+ "tranquillized": "tranquilized",
1606
+ "tranquillizer": "tranquilizer",
1607
+ "tranquillizers": "tranquilizers",
1608
+ "tranquillizes": "tranquilizes",
1609
+ "tranquillizing": "tranquilizing",
1610
+ "tranquilly": "tranquility",
1611
+ "transistorised": "transistorized",
1612
+ "traumatise": "traumatize",
1613
+ "traumatised": "traumatized",
1614
+ "traumatises": "traumatizes",
1615
+ "traumatising": "traumatizing",
1616
+ "travelled": "traveled",
1617
+ "traveller": "traveler",
1618
+ "travellers": "travelers",
1619
+ "travelling": "traveling",
1620
+ "travelog": "travelogue",
1621
+ "travelogs": "travelogues",
1622
+ "trialled": "trialed",
1623
+ "trialling": "trialing",
1624
+ "tricolour": "tricolor",
1625
+ "tricolours": "tricolors",
1626
+ "trivialise": "trivialize",
1627
+ "trivialised": "trivialized",
1628
+ "trivialises": "trivializes",
1629
+ "trivialising": "trivializing",
1630
+ "tumour": "tumor",
1631
+ "tumours": "tumors",
1632
+ "tunnelled": "tunneled",
1633
+ "tunnelling": "tunneling",
1634
+ "tyrannise": "tyrannize",
1635
+ "tyrannised": "tyrannized",
1636
+ "tyrannises": "tyrannizes",
1637
+ "tyrannising": "tyrannizing",
1638
+ "tyre": "tire",
1639
+ "tyres": "tires",
1640
+ "unauthorised": "unauthorized",
1641
+ "uncivilised": "uncivilized",
1642
+ "underutilised": "underutilized",
1643
+ "unequalled": "unequaled",
1644
+ "unfavourable": "unfavorable",
1645
+ "unfavourably": "unfavorably",
1646
+ "unionisation": "unionization",
1647
+ "unionise": "unionize",
1648
+ "unionised": "unionized",
1649
+ "unionises": "unionizes",
1650
+ "unionising": "unionizing",
1651
+ "unorganised": "unorganized",
1652
+ "unravelled": "unraveled",
1653
+ "unravelling": "unraveling",
1654
+ "unrecognisable": "unrecognizable",
1655
+ "unrecognised": "unrecognized",
1656
+ "unrivalled": "unrivaled",
1657
+ "unsavoury": "unsavory",
1658
+ "untrammelled": "untrammeled",
1659
+ "urbanisation": "urbanization",
1660
+ "urbanise": "urbanize",
1661
+ "urbanised": "urbanized",
1662
+ "urbanises": "urbanizes",
1663
+ "urbanising": "urbanizing",
1664
+ "utilisable": "utilizable",
1665
+ "utilisation": "utilization",
1666
+ "utilise": "utilize",
1667
+ "utilised": "utilized",
1668
+ "utilises": "utilizes",
1669
+ "utilising": "utilizing",
1670
+ "valour": "valor",
1671
+ "vandalise": "vandalize",
1672
+ "vandalised": "vandalized",
1673
+ "vandalises": "vandalizes",
1674
+ "vandalising": "vandalizing",
1675
+ "vaporisation": "vaporization",
1676
+ "vaporise": "vaporize",
1677
+ "vaporised": "vaporized",
1678
+ "vaporises": "vaporizes",
1679
+ "vaporising": "vaporizing",
1680
+ "vapour": "vapor",
1681
+ "vapours": "vapors",
1682
+ "verbalise": "verbalize",
1683
+ "verbalised": "verbalized",
1684
+ "verbalises": "verbalizes",
1685
+ "verbalising": "verbalizing",
1686
+ "victimisation": "victimization",
1687
+ "victimise": "victimize",
1688
+ "victimised": "victimized",
1689
+ "victimises": "victimizes",
1690
+ "victimising": "victimizing",
1691
+ "videodisc": "videodisk",
1692
+ "videodiscs": "videodisks",
1693
+ "vigour": "vigor",
1694
+ "visualisation": "visualization",
1695
+ "visualisations": "visualizations",
1696
+ "visualise": "visualize",
1697
+ "visualised": "visualized",
1698
+ "visualises": "visualizes",
1699
+ "visualising": "visualizing",
1700
+ "vocalisation": "vocalization",
1701
+ "vocalisations": "vocalizations",
1702
+ "vocalise": "vocalize",
1703
+ "vocalised": "vocalized",
1704
+ "vocalises": "vocalizes",
1705
+ "vocalising": "vocalizing",
1706
+ "vulcanised": "vulcanized",
1707
+ "vulgarisation": "vulgarization",
1708
+ "vulgarise": "vulgarize",
1709
+ "vulgarised": "vulgarized",
1710
+ "vulgarises": "vulgarizes",
1711
+ "vulgarising": "vulgarizing",
1712
+ "waggon": "wagon",
1713
+ "waggons": "wagons",
1714
+ "watercolour": "watercolor",
1715
+ "watercolours": "watercolors",
1716
+ "weaselled": "weaseled",
1717
+ "weaselling": "weaseling",
1718
+ "westernisation": "westernization",
1719
+ "westernise": "westernize",
1720
+ "westernised": "westernized",
1721
+ "westernises": "westernizes",
1722
+ "westernising": "westernizing",
1723
+ "womanise": "womanize",
1724
+ "womanised": "womanized",
1725
+ "womaniser": "womanizer",
1726
+ "womanisers": "womanizers",
1727
+ "womanises": "womanizes",
1728
+ "womanising": "womanizing",
1729
+ "woollen": "woolen",
1730
+ "woollens": "woolens",
1731
+ "woollies": "woolies",
1732
+ "woolly": "wooly",
1733
+ "worshipped": "worshiped",
1734
+ "worshipper": "worshiper",
1735
+ "worshipping": "worshiping",
1736
+ "yodelled": "yodeled",
1737
+ "yodelling": "yodeling",
1738
+ "yoghourt": "yogurt",
1739
+ "yoghourts": "yogurts",
1740
+ "yoghurt": "yogurt",
1741
+ "yoghurts": "yogurts"
1742
+ }
preprocessor_config.json ADDED
The diff for this file is too large to render. See raw diff
 
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:107edf16167050c752c43e4020937bfcba85da9bd1a1954896e041e536e26635
3
+ size 1527847357
rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1bf25ead1e31e6b1f81228ada1a9e789b3a0acf6a1c7adb1e0f4d53b4fdda4c2
3
+ size 14583
rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2dee06db6c330a44136c9944a1b7ff5a3888ec208e4626f1e443cbe2bb81f989
3
+ size 14583
rng_state_2.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a16d173db15ec8d1a3177cdb7ca9090a97b46cb95b5b15c5366ebabbbfe9575a
3
+ size 14583
rng_state_3.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:13b0f8a94496a501e6acbf472ec2b6184a92479df3c74378a945a6e44ce6f582
3
+ size 14583
special_tokens_map.json ADDED
@@ -0,0 +1,133 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|endoftext|>",
4
+ "<|startoftranscript|>",
5
+ "<|en|>",
6
+ "<|zh|>",
7
+ "<|de|>",
8
+ "<|es|>",
9
+ "<|ru|>",
10
+ "<|ko|>",
11
+ "<|fr|>",
12
+ "<|ja|>",
13
+ "<|pt|>",
14
+ "<|tr|>",
15
+ "<|pl|>",
16
+ "<|ca|>",
17
+ "<|nl|>",
18
+ "<|ar|>",
19
+ "<|sv|>",
20
+ "<|it|>",
21
+ "<|id|>",
22
+ "<|hi|>",
23
+ "<|fi|>",
24
+ "<|vi|>",
25
+ "<|he|>",
26
+ "<|uk|>",
27
+ "<|el|>",
28
+ "<|ms|>",
29
+ "<|cs|>",
30
+ "<|ro|>",
31
+ "<|da|>",
32
+ "<|hu|>",
33
+ "<|ta|>",
34
+ "<|no|>",
35
+ "<|th|>",
36
+ "<|ur|>",
37
+ "<|hr|>",
38
+ "<|bg|>",
39
+ "<|lt|>",
40
+ "<|la|>",
41
+ "<|mi|>",
42
+ "<|ml|>",
43
+ "<|cy|>",
44
+ "<|sk|>",
45
+ "<|te|>",
46
+ "<|fa|>",
47
+ "<|lv|>",
48
+ "<|bn|>",
49
+ "<|sr|>",
50
+ "<|az|>",
51
+ "<|sl|>",
52
+ "<|kn|>",
53
+ "<|et|>",
54
+ "<|mk|>",
55
+ "<|br|>",
56
+ "<|eu|>",
57
+ "<|is|>",
58
+ "<|hy|>",
59
+ "<|ne|>",
60
+ "<|mn|>",
61
+ "<|bs|>",
62
+ "<|kk|>",
63
+ "<|sq|>",
64
+ "<|sw|>",
65
+ "<|gl|>",
66
+ "<|mr|>",
67
+ "<|pa|>",
68
+ "<|si|>",
69
+ "<|km|>",
70
+ "<|sn|>",
71
+ "<|yo|>",
72
+ "<|so|>",
73
+ "<|af|>",
74
+ "<|oc|>",
75
+ "<|ka|>",
76
+ "<|be|>",
77
+ "<|tg|>",
78
+ "<|sd|>",
79
+ "<|gu|>",
80
+ "<|am|>",
81
+ "<|yi|>",
82
+ "<|lo|>",
83
+ "<|uz|>",
84
+ "<|fo|>",
85
+ "<|ht|>",
86
+ "<|ps|>",
87
+ "<|tk|>",
88
+ "<|nn|>",
89
+ "<|mt|>",
90
+ "<|sa|>",
91
+ "<|lb|>",
92
+ "<|my|>",
93
+ "<|bo|>",
94
+ "<|tl|>",
95
+ "<|mg|>",
96
+ "<|as|>",
97
+ "<|tt|>",
98
+ "<|haw|>",
99
+ "<|ln|>",
100
+ "<|ha|>",
101
+ "<|ba|>",
102
+ "<|jw|>",
103
+ "<|su|>",
104
+ "<|translate|>",
105
+ "<|transcribe|>",
106
+ "<|startoflm|>",
107
+ "<|startofprev|>",
108
+ "<|nocaptions|>",
109
+ "<|notimestamps|>"
110
+ ],
111
+ "bos_token": {
112
+ "content": "<|endoftext|>",
113
+ "lstrip": false,
114
+ "normalized": true,
115
+ "rstrip": false,
116
+ "single_word": false
117
+ },
118
+ "eos_token": {
119
+ "content": "<|endoftext|>",
120
+ "lstrip": false,
121
+ "normalized": true,
122
+ "rstrip": false,
123
+ "single_word": false
124
+ },
125
+ "pad_token": "<|endoftext|>",
126
+ "unk_token": {
127
+ "content": "<|endoftext|>",
128
+ "lstrip": false,
129
+ "normalized": true,
130
+ "rstrip": false,
131
+ "single_word": false
132
+ }
133
+ }
tokenizer_config.json ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "bos_token": {
5
+ "__type": "AddedToken",
6
+ "content": "<|endoftext|>",
7
+ "lstrip": false,
8
+ "normalized": true,
9
+ "rstrip": false,
10
+ "single_word": false
11
+ },
12
+ "eos_token": {
13
+ "__type": "AddedToken",
14
+ "content": "<|endoftext|>",
15
+ "lstrip": false,
16
+ "normalized": true,
17
+ "rstrip": false,
18
+ "single_word": false
19
+ },
20
+ "errors": "replace",
21
+ "model_max_length": 1024,
22
+ "pad_token": null,
23
+ "processor_class": "WhisperProcessor",
24
+ "return_attention_mask": false,
25
+ "special_tokens_map_file": null,
26
+ "tokenizer_class": "WhisperTokenizer",
27
+ "unk_token": {
28
+ "__type": "AddedToken",
29
+ "content": "<|endoftext|>",
30
+ "lstrip": false,
31
+ "normalized": true,
32
+ "rstrip": false,
33
+ "single_word": false
34
+ }
35
+ }
trainer_state.json ADDED
@@ -0,0 +1,3535 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 25.09991015830726,
3
+ "best_model_checkpoint": "all_lang_models/odia_models/whisper-medium-or_alldata_multigpu/checkpoint-5100",
4
+ "epoch": 3.5075653370013757,
5
+ "global_step": 5100,
6
+ "is_hyper_param_search": false,
7
+ "is_local_process_zero": true,
8
+ "is_world_process_zero": true,
9
+ "log_history": [
10
+ {
11
+ "epoch": 0.01,
12
+ "learning_rate": 2.192560871397968e-06,
13
+ "loss": 3.5823,
14
+ "step": 10
15
+ },
16
+ {
17
+ "epoch": 0.01,
18
+ "learning_rate": 5.119010278963368e-06,
19
+ "loss": 1.5595,
20
+ "step": 20
21
+ },
22
+ {
23
+ "epoch": 0.02,
24
+ "learning_rate": 6.257677982717129e-06,
25
+ "loss": 1.1267,
26
+ "step": 30
27
+ },
28
+ {
29
+ "epoch": 0.03,
30
+ "learning_rate": 6.9781721403396e-06,
31
+ "loss": 0.6488,
32
+ "step": 40
33
+ },
34
+ {
35
+ "epoch": 0.03,
36
+ "learning_rate": 7.506433605585243e-06,
37
+ "loss": 0.4383,
38
+ "step": 50
39
+ },
40
+ {
41
+ "epoch": 0.04,
42
+ "learning_rate": 7.923729588202299e-06,
43
+ "loss": 0.3338,
44
+ "step": 60
45
+ },
46
+ {
47
+ "epoch": 0.05,
48
+ "learning_rate": 8.268681480915506e-06,
49
+ "loss": 0.2642,
50
+ "step": 70
51
+ },
52
+ {
53
+ "epoch": 0.06,
54
+ "learning_rate": 8.562705504037769e-06,
55
+ "loss": 0.2227,
56
+ "step": 80
57
+ },
58
+ {
59
+ "epoch": 0.06,
60
+ "learning_rate": 8.818922847973121e-06,
61
+ "loss": 0.2019,
62
+ "step": 90
63
+ },
64
+ {
65
+ "epoch": 0.07,
66
+ "learning_rate": 9.045957702197483e-06,
67
+ "loss": 0.179,
68
+ "step": 100
69
+ },
70
+ {
71
+ "epoch": 0.07,
72
+ "eval_loss": 0.1595458984375,
73
+ "eval_runtime": 342.1462,
74
+ "eval_samples_per_second": 8.771,
75
+ "eval_steps_per_second": 0.07,
76
+ "eval_wer": 54.676415006660676,
77
+ "step": 100
78
+ },
79
+ {
80
+ "epoch": 0.08,
81
+ "learning_rate": 9.249783143647417e-06,
82
+ "loss": 0.1662,
83
+ "step": 110
84
+ },
85
+ {
86
+ "epoch": 0.08,
87
+ "learning_rate": 9.43470745971544e-06,
88
+ "loss": 0.1543,
89
+ "step": 120
90
+ },
91
+ {
92
+ "epoch": 0.09,
93
+ "learning_rate": 9.603940564268044e-06,
94
+ "loss": 0.1431,
95
+ "step": 130
96
+ },
97
+ {
98
+ "epoch": 0.1,
99
+ "learning_rate": 9.759938293620717e-06,
100
+ "loss": 0.134,
101
+ "step": 140
102
+ },
103
+ {
104
+ "epoch": 0.1,
105
+ "learning_rate": 9.904621547904999e-06,
106
+ "loss": 0.1255,
107
+ "step": 150
108
+ },
109
+ {
110
+ "epoch": 0.11,
111
+ "learning_rate": 9.9986531986532e-06,
112
+ "loss": 0.1215,
113
+ "step": 160
114
+ },
115
+ {
116
+ "epoch": 0.12,
117
+ "learning_rate": 9.991919191919192e-06,
118
+ "loss": 0.1154,
119
+ "step": 170
120
+ },
121
+ {
122
+ "epoch": 0.12,
123
+ "learning_rate": 9.985185185185185e-06,
124
+ "loss": 0.1117,
125
+ "step": 180
126
+ },
127
+ {
128
+ "epoch": 0.13,
129
+ "learning_rate": 9.978451178451179e-06,
130
+ "loss": 0.1096,
131
+ "step": 190
132
+ },
133
+ {
134
+ "epoch": 0.14,
135
+ "learning_rate": 9.971717171717173e-06,
136
+ "loss": 0.1049,
137
+ "step": 200
138
+ },
139
+ {
140
+ "epoch": 0.14,
141
+ "eval_loss": 0.10455322265625,
142
+ "eval_runtime": 372.4886,
143
+ "eval_samples_per_second": 8.057,
144
+ "eval_steps_per_second": 0.064,
145
+ "eval_wer": 42.1326559063168,
146
+ "step": 200
147
+ },
148
+ {
149
+ "epoch": 0.14,
150
+ "learning_rate": 9.964983164983167e-06,
151
+ "loss": 0.1001,
152
+ "step": 210
153
+ },
154
+ {
155
+ "epoch": 0.15,
156
+ "learning_rate": 9.95824915824916e-06,
157
+ "loss": 0.0962,
158
+ "step": 220
159
+ },
160
+ {
161
+ "epoch": 0.16,
162
+ "learning_rate": 9.951515151515152e-06,
163
+ "loss": 0.0932,
164
+ "step": 230
165
+ },
166
+ {
167
+ "epoch": 0.17,
168
+ "learning_rate": 9.944781144781146e-06,
169
+ "loss": 0.0913,
170
+ "step": 240
171
+ },
172
+ {
173
+ "epoch": 0.17,
174
+ "learning_rate": 9.938047138047138e-06,
175
+ "loss": 0.0878,
176
+ "step": 250
177
+ },
178
+ {
179
+ "epoch": 0.18,
180
+ "learning_rate": 9.931313131313132e-06,
181
+ "loss": 0.0845,
182
+ "step": 260
183
+ },
184
+ {
185
+ "epoch": 0.19,
186
+ "learning_rate": 9.924579124579126e-06,
187
+ "loss": 0.0831,
188
+ "step": 270
189
+ },
190
+ {
191
+ "epoch": 0.19,
192
+ "learning_rate": 9.917845117845119e-06,
193
+ "loss": 0.083,
194
+ "step": 280
195
+ },
196
+ {
197
+ "epoch": 0.2,
198
+ "learning_rate": 9.911111111111113e-06,
199
+ "loss": 0.0816,
200
+ "step": 290
201
+ },
202
+ {
203
+ "epoch": 0.21,
204
+ "learning_rate": 9.904377104377105e-06,
205
+ "loss": 0.0812,
206
+ "step": 300
207
+ },
208
+ {
209
+ "epoch": 0.21,
210
+ "eval_loss": 0.09039306640625,
211
+ "eval_runtime": 340.7369,
212
+ "eval_samples_per_second": 8.807,
213
+ "eval_steps_per_second": 0.07,
214
+ "eval_wer": 37.535239629480465,
215
+ "step": 300
216
+ },
217
+ {
218
+ "epoch": 0.21,
219
+ "learning_rate": 9.897643097643098e-06,
220
+ "loss": 0.0773,
221
+ "step": 310
222
+ },
223
+ {
224
+ "epoch": 0.22,
225
+ "learning_rate": 9.890909090909092e-06,
226
+ "loss": 0.0758,
227
+ "step": 320
228
+ },
229
+ {
230
+ "epoch": 0.23,
231
+ "learning_rate": 9.884175084175084e-06,
232
+ "loss": 0.076,
233
+ "step": 330
234
+ },
235
+ {
236
+ "epoch": 0.23,
237
+ "learning_rate": 9.877441077441078e-06,
238
+ "loss": 0.0741,
239
+ "step": 340
240
+ },
241
+ {
242
+ "epoch": 0.24,
243
+ "learning_rate": 9.870707070707072e-06,
244
+ "loss": 0.0723,
245
+ "step": 350
246
+ },
247
+ {
248
+ "epoch": 0.25,
249
+ "learning_rate": 9.863973063973065e-06,
250
+ "loss": 0.0717,
251
+ "step": 360
252
+ },
253
+ {
254
+ "epoch": 0.25,
255
+ "learning_rate": 9.857239057239057e-06,
256
+ "loss": 0.0714,
257
+ "step": 370
258
+ },
259
+ {
260
+ "epoch": 0.26,
261
+ "learning_rate": 9.850505050505051e-06,
262
+ "loss": 0.0697,
263
+ "step": 380
264
+ },
265
+ {
266
+ "epoch": 0.27,
267
+ "learning_rate": 9.843771043771044e-06,
268
+ "loss": 0.067,
269
+ "step": 390
270
+ },
271
+ {
272
+ "epoch": 0.28,
273
+ "learning_rate": 9.837037037037038e-06,
274
+ "loss": 0.0652,
275
+ "step": 400
276
+ },
277
+ {
278
+ "epoch": 0.28,
279
+ "eval_loss": 0.08392333984375,
280
+ "eval_runtime": 333.3596,
281
+ "eval_samples_per_second": 9.002,
282
+ "eval_steps_per_second": 0.072,
283
+ "eval_wer": 34.24207689209703,
284
+ "step": 400
285
+ },
286
+ {
287
+ "epoch": 0.28,
288
+ "learning_rate": 9.830303030303032e-06,
289
+ "loss": 0.0668,
290
+ "step": 410
291
+ },
292
+ {
293
+ "epoch": 0.29,
294
+ "learning_rate": 9.823569023569024e-06,
295
+ "loss": 0.0654,
296
+ "step": 420
297
+ },
298
+ {
299
+ "epoch": 0.3,
300
+ "learning_rate": 9.816835016835018e-06,
301
+ "loss": 0.0625,
302
+ "step": 430
303
+ },
304
+ {
305
+ "epoch": 0.3,
306
+ "learning_rate": 9.81010101010101e-06,
307
+ "loss": 0.0625,
308
+ "step": 440
309
+ },
310
+ {
311
+ "epoch": 0.31,
312
+ "learning_rate": 9.803367003367003e-06,
313
+ "loss": 0.0653,
314
+ "step": 450
315
+ },
316
+ {
317
+ "epoch": 0.32,
318
+ "learning_rate": 9.796632996632997e-06,
319
+ "loss": 0.0623,
320
+ "step": 460
321
+ },
322
+ {
323
+ "epoch": 0.32,
324
+ "learning_rate": 9.78989898989899e-06,
325
+ "loss": 0.0626,
326
+ "step": 470
327
+ },
328
+ {
329
+ "epoch": 0.33,
330
+ "learning_rate": 9.783164983164984e-06,
331
+ "loss": 0.0611,
332
+ "step": 480
333
+ },
334
+ {
335
+ "epoch": 0.34,
336
+ "learning_rate": 9.776430976430978e-06,
337
+ "loss": 0.0596,
338
+ "step": 490
339
+ },
340
+ {
341
+ "epoch": 0.34,
342
+ "learning_rate": 9.76969696969697e-06,
343
+ "loss": 0.0608,
344
+ "step": 500
345
+ },
346
+ {
347
+ "epoch": 0.34,
348
+ "eval_loss": 0.074951171875,
349
+ "eval_runtime": 334.6599,
350
+ "eval_samples_per_second": 8.967,
351
+ "eval_steps_per_second": 0.072,
352
+ "eval_wer": 32.52888875120047,
353
+ "step": 500
354
+ },
355
+ {
356
+ "epoch": 0.35,
357
+ "learning_rate": 9.762962962962964e-06,
358
+ "loss": 0.0611,
359
+ "step": 510
360
+ },
361
+ {
362
+ "epoch": 0.36,
363
+ "learning_rate": 9.756228956228957e-06,
364
+ "loss": 0.0596,
365
+ "step": 520
366
+ },
367
+ {
368
+ "epoch": 0.36,
369
+ "learning_rate": 9.749494949494949e-06,
370
+ "loss": 0.058,
371
+ "step": 530
372
+ },
373
+ {
374
+ "epoch": 0.37,
375
+ "learning_rate": 9.742760942760943e-06,
376
+ "loss": 0.0566,
377
+ "step": 540
378
+ },
379
+ {
380
+ "epoch": 0.38,
381
+ "learning_rate": 9.736026936026937e-06,
382
+ "loss": 0.0562,
383
+ "step": 550
384
+ },
385
+ {
386
+ "epoch": 0.39,
387
+ "learning_rate": 9.729292929292931e-06,
388
+ "loss": 0.0569,
389
+ "step": 560
390
+ },
391
+ {
392
+ "epoch": 0.39,
393
+ "learning_rate": 9.722558922558924e-06,
394
+ "loss": 0.0545,
395
+ "step": 570
396
+ },
397
+ {
398
+ "epoch": 0.4,
399
+ "learning_rate": 9.715824915824916e-06,
400
+ "loss": 0.0533,
401
+ "step": 580
402
+ },
403
+ {
404
+ "epoch": 0.41,
405
+ "learning_rate": 9.70909090909091e-06,
406
+ "loss": 0.0557,
407
+ "step": 590
408
+ },
409
+ {
410
+ "epoch": 0.41,
411
+ "learning_rate": 9.702356902356903e-06,
412
+ "loss": 0.0553,
413
+ "step": 600
414
+ },
415
+ {
416
+ "epoch": 0.41,
417
+ "eval_loss": 0.0740966796875,
418
+ "eval_runtime": 340.3479,
419
+ "eval_samples_per_second": 8.817,
420
+ "eval_steps_per_second": 0.071,
421
+ "eval_wer": 31.209145264723194,
422
+ "step": 600
423
+ },
424
+ {
425
+ "epoch": 0.42,
426
+ "learning_rate": 9.695622895622897e-06,
427
+ "loss": 0.0535,
428
+ "step": 610
429
+ },
430
+ {
431
+ "epoch": 0.43,
432
+ "learning_rate": 9.688888888888889e-06,
433
+ "loss": 0.0541,
434
+ "step": 620
435
+ },
436
+ {
437
+ "epoch": 0.43,
438
+ "learning_rate": 9.682154882154883e-06,
439
+ "loss": 0.0531,
440
+ "step": 630
441
+ },
442
+ {
443
+ "epoch": 0.44,
444
+ "learning_rate": 9.675420875420877e-06,
445
+ "loss": 0.0531,
446
+ "step": 640
447
+ },
448
+ {
449
+ "epoch": 0.45,
450
+ "learning_rate": 9.66868686868687e-06,
451
+ "loss": 0.0518,
452
+ "step": 650
453
+ },
454
+ {
455
+ "epoch": 0.45,
456
+ "learning_rate": 9.661952861952862e-06,
457
+ "loss": 0.0519,
458
+ "step": 660
459
+ },
460
+ {
461
+ "epoch": 0.46,
462
+ "learning_rate": 9.655218855218856e-06,
463
+ "loss": 0.0536,
464
+ "step": 670
465
+ },
466
+ {
467
+ "epoch": 0.47,
468
+ "learning_rate": 9.648484848484849e-06,
469
+ "loss": 0.0517,
470
+ "step": 680
471
+ },
472
+ {
473
+ "epoch": 0.47,
474
+ "learning_rate": 9.641750841750843e-06,
475
+ "loss": 0.0516,
476
+ "step": 690
477
+ },
478
+ {
479
+ "epoch": 0.48,
480
+ "learning_rate": 9.635016835016837e-06,
481
+ "loss": 0.0497,
482
+ "step": 700
483
+ },
484
+ {
485
+ "epoch": 0.48,
486
+ "eval_loss": 0.06781005859375,
487
+ "eval_runtime": 332.0934,
488
+ "eval_samples_per_second": 9.037,
489
+ "eval_steps_per_second": 0.072,
490
+ "eval_wer": 30.16202484587503,
491
+ "step": 700
492
+ },
493
+ {
494
+ "epoch": 0.49,
495
+ "learning_rate": 9.628282828282829e-06,
496
+ "loss": 0.051,
497
+ "step": 710
498
+ },
499
+ {
500
+ "epoch": 0.5,
501
+ "learning_rate": 9.621548821548823e-06,
502
+ "loss": 0.051,
503
+ "step": 720
504
+ },
505
+ {
506
+ "epoch": 0.5,
507
+ "learning_rate": 9.614814814814816e-06,
508
+ "loss": 0.0504,
509
+ "step": 730
510
+ },
511
+ {
512
+ "epoch": 0.51,
513
+ "learning_rate": 9.608080808080808e-06,
514
+ "loss": 0.0514,
515
+ "step": 740
516
+ },
517
+ {
518
+ "epoch": 0.52,
519
+ "learning_rate": 9.601346801346802e-06,
520
+ "loss": 0.0499,
521
+ "step": 750
522
+ },
523
+ {
524
+ "epoch": 0.52,
525
+ "learning_rate": 9.594612794612796e-06,
526
+ "loss": 0.05,
527
+ "step": 760
528
+ },
529
+ {
530
+ "epoch": 0.53,
531
+ "learning_rate": 9.587878787878789e-06,
532
+ "loss": 0.05,
533
+ "step": 770
534
+ },
535
+ {
536
+ "epoch": 0.54,
537
+ "learning_rate": 9.581144781144783e-06,
538
+ "loss": 0.0488,
539
+ "step": 780
540
+ },
541
+ {
542
+ "epoch": 0.54,
543
+ "learning_rate": 9.574410774410775e-06,
544
+ "loss": 0.0498,
545
+ "step": 790
546
+ },
547
+ {
548
+ "epoch": 0.55,
549
+ "learning_rate": 9.56767676767677e-06,
550
+ "loss": 0.048,
551
+ "step": 800
552
+ },
553
+ {
554
+ "epoch": 0.55,
555
+ "eval_loss": 0.06671142578125,
556
+ "eval_runtime": 333.8217,
557
+ "eval_samples_per_second": 8.99,
558
+ "eval_steps_per_second": 0.072,
559
+ "eval_wer": 30.038105269679978,
560
+ "step": 800
561
+ },
562
+ {
563
+ "epoch": 0.56,
564
+ "learning_rate": 9.560942760942762e-06,
565
+ "loss": 0.0471,
566
+ "step": 810
567
+ },
568
+ {
569
+ "epoch": 0.56,
570
+ "learning_rate": 9.554208754208754e-06,
571
+ "loss": 0.049,
572
+ "step": 820
573
+ },
574
+ {
575
+ "epoch": 0.57,
576
+ "learning_rate": 9.547474747474748e-06,
577
+ "loss": 0.0484,
578
+ "step": 830
579
+ },
580
+ {
581
+ "epoch": 0.58,
582
+ "learning_rate": 9.540740740740742e-06,
583
+ "loss": 0.0466,
584
+ "step": 840
585
+ },
586
+ {
587
+ "epoch": 0.58,
588
+ "learning_rate": 9.534006734006735e-06,
589
+ "loss": 0.046,
590
+ "step": 850
591
+ },
592
+ {
593
+ "epoch": 0.59,
594
+ "learning_rate": 9.527272727272729e-06,
595
+ "loss": 0.0478,
596
+ "step": 860
597
+ },
598
+ {
599
+ "epoch": 0.6,
600
+ "learning_rate": 9.520538720538721e-06,
601
+ "loss": 0.0465,
602
+ "step": 870
603
+ },
604
+ {
605
+ "epoch": 0.61,
606
+ "learning_rate": 9.513804713804713e-06,
607
+ "loss": 0.0491,
608
+ "step": 880
609
+ },
610
+ {
611
+ "epoch": 0.61,
612
+ "learning_rate": 9.507070707070707e-06,
613
+ "loss": 0.0447,
614
+ "step": 890
615
+ },
616
+ {
617
+ "epoch": 0.62,
618
+ "learning_rate": 9.500336700336702e-06,
619
+ "loss": 0.0456,
620
+ "step": 900
621
+ },
622
+ {
623
+ "epoch": 0.62,
624
+ "eval_loss": 0.06402587890625,
625
+ "eval_runtime": 336.9235,
626
+ "eval_samples_per_second": 8.907,
627
+ "eval_steps_per_second": 0.071,
628
+ "eval_wer": 28.80200749713436,
629
+ "step": 900
630
+ },
631
+ {
632
+ "epoch": 0.63,
633
+ "learning_rate": 9.493602693602694e-06,
634
+ "loss": 0.0459,
635
+ "step": 910
636
+ },
637
+ {
638
+ "epoch": 0.63,
639
+ "learning_rate": 9.486868686868688e-06,
640
+ "loss": 0.0472,
641
+ "step": 920
642
+ },
643
+ {
644
+ "epoch": 0.64,
645
+ "learning_rate": 9.48013468013468e-06,
646
+ "loss": 0.0459,
647
+ "step": 930
648
+ },
649
+ {
650
+ "epoch": 0.65,
651
+ "learning_rate": 9.473400673400675e-06,
652
+ "loss": 0.0457,
653
+ "step": 940
654
+ },
655
+ {
656
+ "epoch": 0.65,
657
+ "learning_rate": 9.466666666666667e-06,
658
+ "loss": 0.0469,
659
+ "step": 950
660
+ },
661
+ {
662
+ "epoch": 0.66,
663
+ "learning_rate": 9.459932659932661e-06,
664
+ "loss": 0.0456,
665
+ "step": 960
666
+ },
667
+ {
668
+ "epoch": 0.67,
669
+ "learning_rate": 9.453198653198653e-06,
670
+ "loss": 0.0431,
671
+ "step": 970
672
+ },
673
+ {
674
+ "epoch": 0.67,
675
+ "learning_rate": 9.446464646464648e-06,
676
+ "loss": 0.0435,
677
+ "step": 980
678
+ },
679
+ {
680
+ "epoch": 0.68,
681
+ "learning_rate": 9.439730639730642e-06,
682
+ "loss": 0.0458,
683
+ "step": 990
684
+ },
685
+ {
686
+ "epoch": 0.69,
687
+ "learning_rate": 9.432996632996634e-06,
688
+ "loss": 0.044,
689
+ "step": 1000
690
+ },
691
+ {
692
+ "epoch": 0.69,
693
+ "eval_loss": 0.0638427734375,
694
+ "eval_runtime": 345.0473,
695
+ "eval_samples_per_second": 8.697,
696
+ "eval_steps_per_second": 0.07,
697
+ "eval_wer": 28.91973109451966,
698
+ "step": 1000
699
+ },
700
+ {
701
+ "epoch": 0.69,
702
+ "learning_rate": 9.426262626262626e-06,
703
+ "loss": 0.0453,
704
+ "step": 1010
705
+ },
706
+ {
707
+ "epoch": 0.7,
708
+ "learning_rate": 9.41952861952862e-06,
709
+ "loss": 0.043,
710
+ "step": 1020
711
+ },
712
+ {
713
+ "epoch": 0.71,
714
+ "learning_rate": 9.412794612794613e-06,
715
+ "loss": 0.044,
716
+ "step": 1030
717
+ },
718
+ {
719
+ "epoch": 0.72,
720
+ "learning_rate": 9.406060606060607e-06,
721
+ "loss": 0.0434,
722
+ "step": 1040
723
+ },
724
+ {
725
+ "epoch": 0.72,
726
+ "learning_rate": 9.399326599326601e-06,
727
+ "loss": 0.0438,
728
+ "step": 1050
729
+ },
730
+ {
731
+ "epoch": 0.73,
732
+ "learning_rate": 9.392592592592593e-06,
733
+ "loss": 0.0445,
734
+ "step": 1060
735
+ },
736
+ {
737
+ "epoch": 0.74,
738
+ "learning_rate": 9.385858585858588e-06,
739
+ "loss": 0.045,
740
+ "step": 1070
741
+ },
742
+ {
743
+ "epoch": 0.74,
744
+ "learning_rate": 9.37912457912458e-06,
745
+ "loss": 0.0415,
746
+ "step": 1080
747
+ },
748
+ {
749
+ "epoch": 0.75,
750
+ "learning_rate": 9.372390572390572e-06,
751
+ "loss": 0.0421,
752
+ "step": 1090
753
+ },
754
+ {
755
+ "epoch": 0.76,
756
+ "learning_rate": 9.365656565656566e-06,
757
+ "loss": 0.0426,
758
+ "step": 1100
759
+ },
760
+ {
761
+ "epoch": 0.76,
762
+ "eval_loss": 0.0609130859375,
763
+ "eval_runtime": 366.876,
764
+ "eval_samples_per_second": 8.18,
765
+ "eval_steps_per_second": 0.065,
766
+ "eval_wer": 28.35589702283218,
767
+ "step": 1100
768
+ },
769
+ {
770
+ "epoch": 0.76,
771
+ "learning_rate": 9.358922558922559e-06,
772
+ "loss": 0.0438,
773
+ "step": 1110
774
+ },
775
+ {
776
+ "epoch": 0.77,
777
+ "learning_rate": 9.352188552188553e-06,
778
+ "loss": 0.0425,
779
+ "step": 1120
780
+ },
781
+ {
782
+ "epoch": 0.78,
783
+ "learning_rate": 9.345454545454547e-06,
784
+ "loss": 0.0439,
785
+ "step": 1130
786
+ },
787
+ {
788
+ "epoch": 0.78,
789
+ "learning_rate": 9.33872053872054e-06,
790
+ "loss": 0.0431,
791
+ "step": 1140
792
+ },
793
+ {
794
+ "epoch": 0.79,
795
+ "learning_rate": 9.331986531986533e-06,
796
+ "loss": 0.0434,
797
+ "step": 1150
798
+ },
799
+ {
800
+ "epoch": 0.8,
801
+ "learning_rate": 9.325252525252526e-06,
802
+ "loss": 0.0429,
803
+ "step": 1160
804
+ },
805
+ {
806
+ "epoch": 0.8,
807
+ "learning_rate": 9.318518518518518e-06,
808
+ "loss": 0.0423,
809
+ "step": 1170
810
+ },
811
+ {
812
+ "epoch": 0.81,
813
+ "learning_rate": 9.311784511784512e-06,
814
+ "loss": 0.0437,
815
+ "step": 1180
816
+ },
817
+ {
818
+ "epoch": 0.82,
819
+ "learning_rate": 9.305050505050506e-06,
820
+ "loss": 0.0422,
821
+ "step": 1190
822
+ },
823
+ {
824
+ "epoch": 0.83,
825
+ "learning_rate": 9.298316498316499e-06,
826
+ "loss": 0.0413,
827
+ "step": 1200
828
+ },
829
+ {
830
+ "epoch": 0.83,
831
+ "eval_loss": 0.061065673828125,
832
+ "eval_runtime": 478.7261,
833
+ "eval_samples_per_second": 6.269,
834
+ "eval_steps_per_second": 0.05,
835
+ "eval_wer": 27.93766845317389,
836
+ "step": 1200
837
+ },
838
+ {
839
+ "epoch": 0.83,
840
+ "learning_rate": 9.291582491582493e-06,
841
+ "loss": 0.0422,
842
+ "step": 1210
843
+ },
844
+ {
845
+ "epoch": 0.84,
846
+ "learning_rate": 9.284848484848485e-06,
847
+ "loss": 0.0421,
848
+ "step": 1220
849
+ },
850
+ {
851
+ "epoch": 0.85,
852
+ "learning_rate": 9.27811447811448e-06,
853
+ "loss": 0.0439,
854
+ "step": 1230
855
+ },
856
+ {
857
+ "epoch": 0.85,
858
+ "learning_rate": 9.271380471380472e-06,
859
+ "loss": 0.041,
860
+ "step": 1240
861
+ },
862
+ {
863
+ "epoch": 0.86,
864
+ "learning_rate": 9.264646464646466e-06,
865
+ "loss": 0.0418,
866
+ "step": 1250
867
+ },
868
+ {
869
+ "epoch": 0.87,
870
+ "learning_rate": 9.257912457912458e-06,
871
+ "loss": 0.0413,
872
+ "step": 1260
873
+ },
874
+ {
875
+ "epoch": 0.87,
876
+ "learning_rate": 9.251178451178452e-06,
877
+ "loss": 0.0421,
878
+ "step": 1270
879
+ },
880
+ {
881
+ "epoch": 0.88,
882
+ "learning_rate": 9.244444444444445e-06,
883
+ "loss": 0.0416,
884
+ "step": 1280
885
+ },
886
+ {
887
+ "epoch": 0.89,
888
+ "learning_rate": 9.237710437710439e-06,
889
+ "loss": 0.0422,
890
+ "step": 1290
891
+ },
892
+ {
893
+ "epoch": 0.89,
894
+ "learning_rate": 9.230976430976431e-06,
895
+ "loss": 0.0416,
896
+ "step": 1300
897
+ },
898
+ {
899
+ "epoch": 0.89,
900
+ "eval_loss": 0.060760498046875,
901
+ "eval_runtime": 338.6372,
902
+ "eval_samples_per_second": 8.862,
903
+ "eval_steps_per_second": 0.071,
904
+ "eval_wer": 28.266055330090772,
905
+ "step": 1300
906
+ },
907
+ {
908
+ "epoch": 0.9,
909
+ "learning_rate": 9.224242424242424e-06,
910
+ "loss": 0.0399,
911
+ "step": 1310
912
+ },
913
+ {
914
+ "epoch": 0.91,
915
+ "learning_rate": 9.217508417508418e-06,
916
+ "loss": 0.0408,
917
+ "step": 1320
918
+ },
919
+ {
920
+ "epoch": 0.91,
921
+ "learning_rate": 9.210774410774412e-06,
922
+ "loss": 0.0401,
923
+ "step": 1330
924
+ },
925
+ {
926
+ "epoch": 0.92,
927
+ "learning_rate": 9.204040404040406e-06,
928
+ "loss": 0.0399,
929
+ "step": 1340
930
+ },
931
+ {
932
+ "epoch": 0.93,
933
+ "learning_rate": 9.197306397306398e-06,
934
+ "loss": 0.0383,
935
+ "step": 1350
936
+ },
937
+ {
938
+ "epoch": 0.94,
939
+ "learning_rate": 9.19057239057239e-06,
940
+ "loss": 0.0394,
941
+ "step": 1360
942
+ },
943
+ {
944
+ "epoch": 0.94,
945
+ "learning_rate": 9.183838383838385e-06,
946
+ "loss": 0.0382,
947
+ "step": 1370
948
+ },
949
+ {
950
+ "epoch": 0.95,
951
+ "learning_rate": 9.177104377104377e-06,
952
+ "loss": 0.0397,
953
+ "step": 1380
954
+ },
955
+ {
956
+ "epoch": 0.96,
957
+ "learning_rate": 9.170370370370371e-06,
958
+ "loss": 0.0389,
959
+ "step": 1390
960
+ },
961
+ {
962
+ "epoch": 0.96,
963
+ "learning_rate": 9.163636363636365e-06,
964
+ "loss": 0.0401,
965
+ "step": 1400
966
+ },
967
+ {
968
+ "epoch": 0.96,
969
+ "eval_loss": 0.060394287109375,
970
+ "eval_runtime": 1283.2209,
971
+ "eval_samples_per_second": 2.339,
972
+ "eval_steps_per_second": 0.019,
973
+ "eval_wer": 27.441990148393693,
974
+ "step": 1400
975
+ },
976
+ {
977
+ "epoch": 0.97,
978
+ "learning_rate": 9.156902356902358e-06,
979
+ "loss": 0.0406,
980
+ "step": 1410
981
+ },
982
+ {
983
+ "epoch": 0.98,
984
+ "learning_rate": 9.150168350168352e-06,
985
+ "loss": 0.0393,
986
+ "step": 1420
987
+ },
988
+ {
989
+ "epoch": 0.98,
990
+ "learning_rate": 9.143434343434344e-06,
991
+ "loss": 0.041,
992
+ "step": 1430
993
+ },
994
+ {
995
+ "epoch": 0.99,
996
+ "learning_rate": 9.136700336700337e-06,
997
+ "loss": 0.0403,
998
+ "step": 1440
999
+ },
1000
+ {
1001
+ "epoch": 1.0,
1002
+ "learning_rate": 9.12996632996633e-06,
1003
+ "loss": 0.0391,
1004
+ "step": 1450
1005
+ },
1006
+ {
1007
+ "epoch": 1.0,
1008
+ "learning_rate": 9.123232323232323e-06,
1009
+ "loss": 0.0361,
1010
+ "step": 1460
1011
+ },
1012
+ {
1013
+ "epoch": 1.01,
1014
+ "learning_rate": 9.116498316498317e-06,
1015
+ "loss": 0.0367,
1016
+ "step": 1470
1017
+ },
1018
+ {
1019
+ "epoch": 1.02,
1020
+ "learning_rate": 9.109764309764311e-06,
1021
+ "loss": 0.0334,
1022
+ "step": 1480
1023
+ },
1024
+ {
1025
+ "epoch": 1.02,
1026
+ "learning_rate": 9.103030303030304e-06,
1027
+ "loss": 0.0337,
1028
+ "step": 1490
1029
+ },
1030
+ {
1031
+ "epoch": 1.03,
1032
+ "learning_rate": 9.096296296296298e-06,
1033
+ "loss": 0.0352,
1034
+ "step": 1500
1035
+ },
1036
+ {
1037
+ "epoch": 1.03,
1038
+ "eval_loss": 0.0601806640625,
1039
+ "eval_runtime": 383.1061,
1040
+ "eval_samples_per_second": 7.833,
1041
+ "eval_steps_per_second": 0.063,
1042
+ "eval_wer": 27.290188667554755,
1043
+ "step": 1500
1044
+ },
1045
+ {
1046
+ "epoch": 1.04,
1047
+ "learning_rate": 9.08956228956229e-06,
1048
+ "loss": 0.0359,
1049
+ "step": 1510
1050
+ },
1051
+ {
1052
+ "epoch": 1.05,
1053
+ "learning_rate": 9.082828282828283e-06,
1054
+ "loss": 0.0365,
1055
+ "step": 1520
1056
+ },
1057
+ {
1058
+ "epoch": 1.05,
1059
+ "learning_rate": 9.076094276094277e-06,
1060
+ "loss": 0.0351,
1061
+ "step": 1530
1062
+ },
1063
+ {
1064
+ "epoch": 1.06,
1065
+ "learning_rate": 9.06936026936027e-06,
1066
+ "loss": 0.0345,
1067
+ "step": 1540
1068
+ },
1069
+ {
1070
+ "epoch": 1.07,
1071
+ "learning_rate": 9.062626262626263e-06,
1072
+ "loss": 0.0348,
1073
+ "step": 1550
1074
+ },
1075
+ {
1076
+ "epoch": 1.07,
1077
+ "learning_rate": 9.055892255892257e-06,
1078
+ "loss": 0.0345,
1079
+ "step": 1560
1080
+ },
1081
+ {
1082
+ "epoch": 1.08,
1083
+ "learning_rate": 9.04915824915825e-06,
1084
+ "loss": 0.0367,
1085
+ "step": 1570
1086
+ },
1087
+ {
1088
+ "epoch": 1.09,
1089
+ "learning_rate": 9.042424242424244e-06,
1090
+ "loss": 0.0349,
1091
+ "step": 1580
1092
+ },
1093
+ {
1094
+ "epoch": 1.09,
1095
+ "learning_rate": 9.035690235690236e-06,
1096
+ "loss": 0.0344,
1097
+ "step": 1590
1098
+ },
1099
+ {
1100
+ "epoch": 1.1,
1101
+ "learning_rate": 9.028956228956229e-06,
1102
+ "loss": 0.0336,
1103
+ "step": 1600
1104
+ },
1105
+ {
1106
+ "epoch": 1.1,
1107
+ "eval_loss": 0.057952880859375,
1108
+ "eval_runtime": 392.8207,
1109
+ "eval_samples_per_second": 7.64,
1110
+ "eval_steps_per_second": 0.061,
1111
+ "eval_wer": 26.887450044920847,
1112
+ "step": 1600
1113
+ },
1114
+ {
1115
+ "epoch": 1.11,
1116
+ "learning_rate": 9.022222222222223e-06,
1117
+ "loss": 0.034,
1118
+ "step": 1610
1119
+ },
1120
+ {
1121
+ "epoch": 1.11,
1122
+ "learning_rate": 9.015488215488217e-06,
1123
+ "loss": 0.0341,
1124
+ "step": 1620
1125
+ },
1126
+ {
1127
+ "epoch": 1.12,
1128
+ "learning_rate": 9.008754208754209e-06,
1129
+ "loss": 0.0332,
1130
+ "step": 1630
1131
+ },
1132
+ {
1133
+ "epoch": 1.13,
1134
+ "learning_rate": 9.002020202020203e-06,
1135
+ "loss": 0.0346,
1136
+ "step": 1640
1137
+ },
1138
+ {
1139
+ "epoch": 1.13,
1140
+ "learning_rate": 8.995286195286196e-06,
1141
+ "loss": 0.0353,
1142
+ "step": 1650
1143
+ },
1144
+ {
1145
+ "epoch": 1.14,
1146
+ "learning_rate": 8.98855218855219e-06,
1147
+ "loss": 0.033,
1148
+ "step": 1660
1149
+ },
1150
+ {
1151
+ "epoch": 1.15,
1152
+ "learning_rate": 8.981818181818182e-06,
1153
+ "loss": 0.033,
1154
+ "step": 1670
1155
+ },
1156
+ {
1157
+ "epoch": 1.16,
1158
+ "learning_rate": 8.975084175084176e-06,
1159
+ "loss": 0.0349,
1160
+ "step": 1680
1161
+ },
1162
+ {
1163
+ "epoch": 1.16,
1164
+ "learning_rate": 8.96835016835017e-06,
1165
+ "loss": 0.0351,
1166
+ "step": 1690
1167
+ },
1168
+ {
1169
+ "epoch": 1.17,
1170
+ "learning_rate": 8.961616161616163e-06,
1171
+ "loss": 0.0349,
1172
+ "step": 1700
1173
+ },
1174
+ {
1175
+ "epoch": 1.17,
1176
+ "eval_loss": 0.05853271484375,
1177
+ "eval_runtime": 365.8153,
1178
+ "eval_samples_per_second": 8.204,
1179
+ "eval_steps_per_second": 0.066,
1180
+ "eval_wer": 26.70466867003315,
1181
+ "step": 1700
1182
+ },
1183
+ {
1184
+ "epoch": 1.18,
1185
+ "learning_rate": 8.954882154882155e-06,
1186
+ "loss": 0.0346,
1187
+ "step": 1710
1188
+ },
1189
+ {
1190
+ "epoch": 1.18,
1191
+ "learning_rate": 8.948148148148149e-06,
1192
+ "loss": 0.0338,
1193
+ "step": 1720
1194
+ },
1195
+ {
1196
+ "epoch": 1.19,
1197
+ "learning_rate": 8.941414141414142e-06,
1198
+ "loss": 0.0345,
1199
+ "step": 1730
1200
+ },
1201
+ {
1202
+ "epoch": 1.2,
1203
+ "learning_rate": 8.934680134680136e-06,
1204
+ "loss": 0.0354,
1205
+ "step": 1740
1206
+ },
1207
+ {
1208
+ "epoch": 1.2,
1209
+ "learning_rate": 8.927946127946128e-06,
1210
+ "loss": 0.0333,
1211
+ "step": 1750
1212
+ },
1213
+ {
1214
+ "epoch": 1.21,
1215
+ "learning_rate": 8.921212121212122e-06,
1216
+ "loss": 0.0341,
1217
+ "step": 1760
1218
+ },
1219
+ {
1220
+ "epoch": 1.22,
1221
+ "learning_rate": 8.914478114478116e-06,
1222
+ "loss": 0.0349,
1223
+ "step": 1770
1224
+ },
1225
+ {
1226
+ "epoch": 1.22,
1227
+ "learning_rate": 8.907744107744109e-06,
1228
+ "loss": 0.0345,
1229
+ "step": 1780
1230
+ },
1231
+ {
1232
+ "epoch": 1.23,
1233
+ "learning_rate": 8.901010101010101e-06,
1234
+ "loss": 0.035,
1235
+ "step": 1790
1236
+ },
1237
+ {
1238
+ "epoch": 1.24,
1239
+ "learning_rate": 8.894276094276095e-06,
1240
+ "loss": 0.0327,
1241
+ "step": 1800
1242
+ },
1243
+ {
1244
+ "epoch": 1.24,
1245
+ "eval_loss": 0.05743408203125,
1246
+ "eval_runtime": 374.9449,
1247
+ "eval_samples_per_second": 8.004,
1248
+ "eval_steps_per_second": 0.064,
1249
+ "eval_wer": 26.66439480776976,
1250
+ "step": 1800
1251
+ },
1252
+ {
1253
+ "epoch": 1.24,
1254
+ "learning_rate": 8.887542087542087e-06,
1255
+ "loss": 0.0325,
1256
+ "step": 1810
1257
+ },
1258
+ {
1259
+ "epoch": 1.25,
1260
+ "learning_rate": 8.880808080808082e-06,
1261
+ "loss": 0.0343,
1262
+ "step": 1820
1263
+ },
1264
+ {
1265
+ "epoch": 1.26,
1266
+ "learning_rate": 8.874074074074076e-06,
1267
+ "loss": 0.0324,
1268
+ "step": 1830
1269
+ },
1270
+ {
1271
+ "epoch": 1.27,
1272
+ "learning_rate": 8.867340067340068e-06,
1273
+ "loss": 0.0327,
1274
+ "step": 1840
1275
+ },
1276
+ {
1277
+ "epoch": 1.27,
1278
+ "learning_rate": 8.860606060606062e-06,
1279
+ "loss": 0.0341,
1280
+ "step": 1850
1281
+ },
1282
+ {
1283
+ "epoch": 1.28,
1284
+ "learning_rate": 8.853872053872055e-06,
1285
+ "loss": 0.034,
1286
+ "step": 1860
1287
+ },
1288
+ {
1289
+ "epoch": 1.29,
1290
+ "learning_rate": 8.847138047138047e-06,
1291
+ "loss": 0.034,
1292
+ "step": 1870
1293
+ },
1294
+ {
1295
+ "epoch": 1.29,
1296
+ "learning_rate": 8.840404040404041e-06,
1297
+ "loss": 0.0345,
1298
+ "step": 1880
1299
+ },
1300
+ {
1301
+ "epoch": 1.3,
1302
+ "learning_rate": 8.833670033670035e-06,
1303
+ "loss": 0.0341,
1304
+ "step": 1890
1305
+ },
1306
+ {
1307
+ "epoch": 1.31,
1308
+ "learning_rate": 8.826936026936027e-06,
1309
+ "loss": 0.0325,
1310
+ "step": 1900
1311
+ },
1312
+ {
1313
+ "epoch": 1.31,
1314
+ "eval_loss": 0.05572509765625,
1315
+ "eval_runtime": 348.8066,
1316
+ "eval_samples_per_second": 8.604,
1317
+ "eval_steps_per_second": 0.069,
1318
+ "eval_wer": 26.52498528455033,
1319
+ "step": 1900
1320
+ },
1321
+ {
1322
+ "epoch": 1.31,
1323
+ "learning_rate": 8.820202020202022e-06,
1324
+ "loss": 0.0346,
1325
+ "step": 1910
1326
+ },
1327
+ {
1328
+ "epoch": 1.32,
1329
+ "learning_rate": 8.813468013468014e-06,
1330
+ "loss": 0.0335,
1331
+ "step": 1920
1332
+ },
1333
+ {
1334
+ "epoch": 1.33,
1335
+ "learning_rate": 8.806734006734008e-06,
1336
+ "loss": 0.0319,
1337
+ "step": 1930
1338
+ },
1339
+ {
1340
+ "epoch": 1.33,
1341
+ "learning_rate": 8.8e-06,
1342
+ "loss": 0.0335,
1343
+ "step": 1940
1344
+ },
1345
+ {
1346
+ "epoch": 1.34,
1347
+ "learning_rate": 8.793265993265993e-06,
1348
+ "loss": 0.0322,
1349
+ "step": 1950
1350
+ },
1351
+ {
1352
+ "epoch": 1.35,
1353
+ "learning_rate": 8.786531986531987e-06,
1354
+ "loss": 0.0342,
1355
+ "step": 1960
1356
+ },
1357
+ {
1358
+ "epoch": 1.35,
1359
+ "learning_rate": 8.779797979797981e-06,
1360
+ "loss": 0.0321,
1361
+ "step": 1970
1362
+ },
1363
+ {
1364
+ "epoch": 1.36,
1365
+ "learning_rate": 8.773063973063973e-06,
1366
+ "loss": 0.0339,
1367
+ "step": 1980
1368
+ },
1369
+ {
1370
+ "epoch": 1.37,
1371
+ "learning_rate": 8.766329966329968e-06,
1372
+ "loss": 0.034,
1373
+ "step": 1990
1374
+ },
1375
+ {
1376
+ "epoch": 1.38,
1377
+ "learning_rate": 8.75959595959596e-06,
1378
+ "loss": 0.0333,
1379
+ "step": 2000
1380
+ },
1381
+ {
1382
+ "epoch": 1.38,
1383
+ "eval_loss": 0.0565185546875,
1384
+ "eval_runtime": 425.1101,
1385
+ "eval_samples_per_second": 7.059,
1386
+ "eval_steps_per_second": 0.056,
1387
+ "eval_wer": 26.797608352179438,
1388
+ "step": 2000
1389
+ },
1390
+ {
1391
+ "epoch": 1.38,
1392
+ "learning_rate": 8.752861952861954e-06,
1393
+ "loss": 0.0328,
1394
+ "step": 2010
1395
+ },
1396
+ {
1397
+ "epoch": 1.39,
1398
+ "learning_rate": 8.746127946127946e-06,
1399
+ "loss": 0.0332,
1400
+ "step": 2020
1401
+ },
1402
+ {
1403
+ "epoch": 1.4,
1404
+ "learning_rate": 8.73939393939394e-06,
1405
+ "loss": 0.0336,
1406
+ "step": 2030
1407
+ },
1408
+ {
1409
+ "epoch": 1.4,
1410
+ "learning_rate": 8.732659932659935e-06,
1411
+ "loss": 0.0339,
1412
+ "step": 2040
1413
+ },
1414
+ {
1415
+ "epoch": 1.41,
1416
+ "learning_rate": 8.725925925925927e-06,
1417
+ "loss": 0.0335,
1418
+ "step": 2050
1419
+ },
1420
+ {
1421
+ "epoch": 1.42,
1422
+ "learning_rate": 8.71919191919192e-06,
1423
+ "loss": 0.0341,
1424
+ "step": 2060
1425
+ },
1426
+ {
1427
+ "epoch": 1.42,
1428
+ "learning_rate": 8.712457912457913e-06,
1429
+ "loss": 0.0335,
1430
+ "step": 2070
1431
+ },
1432
+ {
1433
+ "epoch": 1.43,
1434
+ "learning_rate": 8.705723905723906e-06,
1435
+ "loss": 0.0336,
1436
+ "step": 2080
1437
+ },
1438
+ {
1439
+ "epoch": 1.44,
1440
+ "learning_rate": 8.6989898989899e-06,
1441
+ "loss": 0.0324,
1442
+ "step": 2090
1443
+ },
1444
+ {
1445
+ "epoch": 1.44,
1446
+ "learning_rate": 8.692255892255892e-06,
1447
+ "loss": 0.0333,
1448
+ "step": 2100
1449
+ },
1450
+ {
1451
+ "epoch": 1.44,
1452
+ "eval_loss": 0.057342529296875,
1453
+ "eval_runtime": 379.4366,
1454
+ "eval_samples_per_second": 7.909,
1455
+ "eval_steps_per_second": 0.063,
1456
+ "eval_wer": 26.351497877877257,
1457
+ "step": 2100
1458
+ },
1459
+ {
1460
+ "epoch": 1.45,
1461
+ "learning_rate": 8.685521885521886e-06,
1462
+ "loss": 0.0326,
1463
+ "step": 2110
1464
+ },
1465
+ {
1466
+ "epoch": 1.46,
1467
+ "learning_rate": 8.67878787878788e-06,
1468
+ "loss": 0.0325,
1469
+ "step": 2120
1470
+ },
1471
+ {
1472
+ "epoch": 1.46,
1473
+ "learning_rate": 8.672053872053873e-06,
1474
+ "loss": 0.0341,
1475
+ "step": 2130
1476
+ },
1477
+ {
1478
+ "epoch": 1.47,
1479
+ "learning_rate": 8.665319865319865e-06,
1480
+ "loss": 0.0327,
1481
+ "step": 2140
1482
+ },
1483
+ {
1484
+ "epoch": 1.48,
1485
+ "learning_rate": 8.65858585858586e-06,
1486
+ "loss": 0.0336,
1487
+ "step": 2150
1488
+ },
1489
+ {
1490
+ "epoch": 1.49,
1491
+ "learning_rate": 8.651851851851852e-06,
1492
+ "loss": 0.0337,
1493
+ "step": 2160
1494
+ },
1495
+ {
1496
+ "epoch": 1.49,
1497
+ "learning_rate": 8.645117845117846e-06,
1498
+ "loss": 0.0329,
1499
+ "step": 2170
1500
+ },
1501
+ {
1502
+ "epoch": 1.5,
1503
+ "learning_rate": 8.63838383838384e-06,
1504
+ "loss": 0.0334,
1505
+ "step": 2180
1506
+ },
1507
+ {
1508
+ "epoch": 1.51,
1509
+ "learning_rate": 8.631649831649832e-06,
1510
+ "loss": 0.0335,
1511
+ "step": 2190
1512
+ },
1513
+ {
1514
+ "epoch": 1.51,
1515
+ "learning_rate": 8.624915824915826e-06,
1516
+ "loss": 0.0322,
1517
+ "step": 2200
1518
+ },
1519
+ {
1520
+ "epoch": 1.51,
1521
+ "eval_loss": 0.057952880859375,
1522
+ "eval_runtime": 363.6764,
1523
+ "eval_samples_per_second": 8.252,
1524
+ "eval_steps_per_second": 0.066,
1525
+ "eval_wer": 26.459927507047926,
1526
+ "step": 2200
1527
+ },
1528
+ {
1529
+ "epoch": 1.52,
1530
+ "learning_rate": 8.618181818181819e-06,
1531
+ "loss": 0.0338,
1532
+ "step": 2210
1533
+ },
1534
+ {
1535
+ "epoch": 1.53,
1536
+ "learning_rate": 8.611447811447811e-06,
1537
+ "loss": 0.0333,
1538
+ "step": 2220
1539
+ },
1540
+ {
1541
+ "epoch": 1.53,
1542
+ "learning_rate": 8.604713804713805e-06,
1543
+ "loss": 0.0329,
1544
+ "step": 2230
1545
+ },
1546
+ {
1547
+ "epoch": 1.54,
1548
+ "learning_rate": 8.597979797979798e-06,
1549
+ "loss": 0.0322,
1550
+ "step": 2240
1551
+ },
1552
+ {
1553
+ "epoch": 1.55,
1554
+ "learning_rate": 8.591245791245792e-06,
1555
+ "loss": 0.0321,
1556
+ "step": 2250
1557
+ },
1558
+ {
1559
+ "epoch": 1.55,
1560
+ "learning_rate": 8.584511784511786e-06,
1561
+ "loss": 0.032,
1562
+ "step": 2260
1563
+ },
1564
+ {
1565
+ "epoch": 1.56,
1566
+ "learning_rate": 8.577777777777778e-06,
1567
+ "loss": 0.0328,
1568
+ "step": 2270
1569
+ },
1570
+ {
1571
+ "epoch": 1.57,
1572
+ "learning_rate": 8.571043771043772e-06,
1573
+ "loss": 0.0327,
1574
+ "step": 2280
1575
+ },
1576
+ {
1577
+ "epoch": 1.57,
1578
+ "learning_rate": 8.564309764309765e-06,
1579
+ "loss": 0.0336,
1580
+ "step": 2290
1581
+ },
1582
+ {
1583
+ "epoch": 1.58,
1584
+ "learning_rate": 8.557575757575757e-06,
1585
+ "loss": 0.0311,
1586
+ "step": 2300
1587
+ },
1588
+ {
1589
+ "epoch": 1.58,
1590
+ "eval_loss": 0.054962158203125,
1591
+ "eval_runtime": 352.2221,
1592
+ "eval_samples_per_second": 8.52,
1593
+ "eval_steps_per_second": 0.068,
1594
+ "eval_wer": 26.190402428823695,
1595
+ "step": 2300
1596
+ },
1597
+ {
1598
+ "epoch": 1.59,
1599
+ "learning_rate": 8.550841750841751e-06,
1600
+ "loss": 0.032,
1601
+ "step": 2310
1602
+ },
1603
+ {
1604
+ "epoch": 1.6,
1605
+ "learning_rate": 8.544107744107745e-06,
1606
+ "loss": 0.0315,
1607
+ "step": 2320
1608
+ },
1609
+ {
1610
+ "epoch": 1.6,
1611
+ "learning_rate": 8.537373737373738e-06,
1612
+ "loss": 0.0317,
1613
+ "step": 2330
1614
+ },
1615
+ {
1616
+ "epoch": 1.61,
1617
+ "learning_rate": 8.530639730639732e-06,
1618
+ "loss": 0.0316,
1619
+ "step": 2340
1620
+ },
1621
+ {
1622
+ "epoch": 1.62,
1623
+ "learning_rate": 8.523905723905724e-06,
1624
+ "loss": 0.0321,
1625
+ "step": 2350
1626
+ },
1627
+ {
1628
+ "epoch": 1.62,
1629
+ "learning_rate": 8.517171717171718e-06,
1630
+ "loss": 0.0314,
1631
+ "step": 2360
1632
+ },
1633
+ {
1634
+ "epoch": 1.63,
1635
+ "learning_rate": 8.51043771043771e-06,
1636
+ "loss": 0.032,
1637
+ "step": 2370
1638
+ },
1639
+ {
1640
+ "epoch": 1.64,
1641
+ "learning_rate": 8.503703703703705e-06,
1642
+ "loss": 0.0318,
1643
+ "step": 2380
1644
+ },
1645
+ {
1646
+ "epoch": 1.64,
1647
+ "learning_rate": 8.496969696969697e-06,
1648
+ "loss": 0.0323,
1649
+ "step": 2390
1650
+ },
1651
+ {
1652
+ "epoch": 1.65,
1653
+ "learning_rate": 8.490235690235691e-06,
1654
+ "loss": 0.0321,
1655
+ "step": 2400
1656
+ },
1657
+ {
1658
+ "epoch": 1.65,
1659
+ "eval_loss": 0.0556640625,
1660
+ "eval_runtime": 402.6402,
1661
+ "eval_samples_per_second": 7.453,
1662
+ "eval_steps_per_second": 0.06,
1663
+ "eval_wer": 26.79141237336968,
1664
+ "step": 2400
1665
+ },
1666
+ {
1667
+ "epoch": 1.66,
1668
+ "learning_rate": 8.483501683501684e-06,
1669
+ "loss": 0.0329,
1670
+ "step": 2410
1671
+ },
1672
+ {
1673
+ "epoch": 1.66,
1674
+ "learning_rate": 8.476767676767678e-06,
1675
+ "loss": 0.0339,
1676
+ "step": 2420
1677
+ },
1678
+ {
1679
+ "epoch": 1.67,
1680
+ "learning_rate": 8.47003367003367e-06,
1681
+ "loss": 0.0315,
1682
+ "step": 2430
1683
+ },
1684
+ {
1685
+ "epoch": 1.68,
1686
+ "learning_rate": 8.463299663299664e-06,
1687
+ "loss": 0.0314,
1688
+ "step": 2440
1689
+ },
1690
+ {
1691
+ "epoch": 1.69,
1692
+ "learning_rate": 8.456565656565657e-06,
1693
+ "loss": 0.0328,
1694
+ "step": 2450
1695
+ },
1696
+ {
1697
+ "epoch": 1.69,
1698
+ "learning_rate": 8.44983164983165e-06,
1699
+ "loss": 0.0322,
1700
+ "step": 2460
1701
+ },
1702
+ {
1703
+ "epoch": 1.7,
1704
+ "learning_rate": 8.443097643097645e-06,
1705
+ "loss": 0.0308,
1706
+ "step": 2470
1707
+ },
1708
+ {
1709
+ "epoch": 1.71,
1710
+ "learning_rate": 8.436363636363637e-06,
1711
+ "loss": 0.0311,
1712
+ "step": 2480
1713
+ },
1714
+ {
1715
+ "epoch": 1.71,
1716
+ "learning_rate": 8.42962962962963e-06,
1717
+ "loss": 0.0322,
1718
+ "step": 2490
1719
+ },
1720
+ {
1721
+ "epoch": 1.72,
1722
+ "learning_rate": 8.422895622895624e-06,
1723
+ "loss": 0.0326,
1724
+ "step": 2500
1725
+ },
1726
+ {
1727
+ "epoch": 1.72,
1728
+ "eval_loss": 0.055755615234375,
1729
+ "eval_runtime": 372.9698,
1730
+ "eval_samples_per_second": 8.046,
1731
+ "eval_steps_per_second": 0.064,
1732
+ "eval_wer": 26.35769385668701,
1733
+ "step": 2500
1734
+ },
1735
+ {
1736
+ "epoch": 1.73,
1737
+ "learning_rate": 8.416161616161616e-06,
1738
+ "loss": 0.0302,
1739
+ "step": 2510
1740
+ },
1741
+ {
1742
+ "epoch": 1.73,
1743
+ "learning_rate": 8.40942760942761e-06,
1744
+ "loss": 0.0312,
1745
+ "step": 2520
1746
+ },
1747
+ {
1748
+ "epoch": 1.74,
1749
+ "learning_rate": 8.402693602693604e-06,
1750
+ "loss": 0.0315,
1751
+ "step": 2530
1752
+ },
1753
+ {
1754
+ "epoch": 1.75,
1755
+ "learning_rate": 8.395959595959597e-06,
1756
+ "loss": 0.0305,
1757
+ "step": 2540
1758
+ },
1759
+ {
1760
+ "epoch": 1.75,
1761
+ "learning_rate": 8.38922558922559e-06,
1762
+ "loss": 0.0317,
1763
+ "step": 2550
1764
+ },
1765
+ {
1766
+ "epoch": 1.76,
1767
+ "learning_rate": 8.382491582491583e-06,
1768
+ "loss": 0.0316,
1769
+ "step": 2560
1770
+ },
1771
+ {
1772
+ "epoch": 1.77,
1773
+ "learning_rate": 8.375757575757576e-06,
1774
+ "loss": 0.0314,
1775
+ "step": 2570
1776
+ },
1777
+ {
1778
+ "epoch": 1.77,
1779
+ "learning_rate": 8.36902356902357e-06,
1780
+ "loss": 0.0313,
1781
+ "step": 2580
1782
+ },
1783
+ {
1784
+ "epoch": 1.78,
1785
+ "learning_rate": 8.362289562289562e-06,
1786
+ "loss": 0.0327,
1787
+ "step": 2590
1788
+ },
1789
+ {
1790
+ "epoch": 1.79,
1791
+ "learning_rate": 8.355555555555556e-06,
1792
+ "loss": 0.0324,
1793
+ "step": 2600
1794
+ },
1795
+ {
1796
+ "epoch": 1.79,
1797
+ "eval_loss": 0.0538330078125,
1798
+ "eval_runtime": 403.0276,
1799
+ "eval_samples_per_second": 7.446,
1800
+ "eval_steps_per_second": 0.06,
1801
+ "eval_wer": 25.958053223457977,
1802
+ "step": 2600
1803
+ },
1804
+ {
1805
+ "epoch": 1.8,
1806
+ "learning_rate": 8.34882154882155e-06,
1807
+ "loss": 0.0318,
1808
+ "step": 2610
1809
+ },
1810
+ {
1811
+ "epoch": 1.8,
1812
+ "learning_rate": 8.342087542087543e-06,
1813
+ "loss": 0.0322,
1814
+ "step": 2620
1815
+ },
1816
+ {
1817
+ "epoch": 1.81,
1818
+ "learning_rate": 8.335353535353537e-06,
1819
+ "loss": 0.0316,
1820
+ "step": 2630
1821
+ },
1822
+ {
1823
+ "epoch": 1.82,
1824
+ "learning_rate": 8.328619528619529e-06,
1825
+ "loss": 0.0313,
1826
+ "step": 2640
1827
+ },
1828
+ {
1829
+ "epoch": 1.82,
1830
+ "learning_rate": 8.321885521885521e-06,
1831
+ "loss": 0.0321,
1832
+ "step": 2650
1833
+ },
1834
+ {
1835
+ "epoch": 1.83,
1836
+ "learning_rate": 8.315151515151516e-06,
1837
+ "loss": 0.0324,
1838
+ "step": 2660
1839
+ },
1840
+ {
1841
+ "epoch": 1.84,
1842
+ "learning_rate": 8.30841750841751e-06,
1843
+ "loss": 0.0325,
1844
+ "step": 2670
1845
+ },
1846
+ {
1847
+ "epoch": 1.84,
1848
+ "learning_rate": 8.301683501683502e-06,
1849
+ "loss": 0.0314,
1850
+ "step": 2680
1851
+ },
1852
+ {
1853
+ "epoch": 1.85,
1854
+ "learning_rate": 8.294949494949496e-06,
1855
+ "loss": 0.0317,
1856
+ "step": 2690
1857
+ },
1858
+ {
1859
+ "epoch": 1.86,
1860
+ "learning_rate": 8.288215488215489e-06,
1861
+ "loss": 0.0309,
1862
+ "step": 2700
1863
+ },
1864
+ {
1865
+ "epoch": 1.86,
1866
+ "eval_loss": 0.05511474609375,
1867
+ "eval_runtime": 350.0336,
1868
+ "eval_samples_per_second": 8.573,
1869
+ "eval_steps_per_second": 0.069,
1870
+ "eval_wer": 25.899191424765327,
1871
+ "step": 2700
1872
+ },
1873
+ {
1874
+ "epoch": 1.86,
1875
+ "learning_rate": 8.281481481481483e-06,
1876
+ "loss": 0.0313,
1877
+ "step": 2710
1878
+ },
1879
+ {
1880
+ "epoch": 1.87,
1881
+ "learning_rate": 8.274747474747475e-06,
1882
+ "loss": 0.0307,
1883
+ "step": 2720
1884
+ },
1885
+ {
1886
+ "epoch": 1.88,
1887
+ "learning_rate": 8.268013468013469e-06,
1888
+ "loss": 0.0297,
1889
+ "step": 2730
1890
+ },
1891
+ {
1892
+ "epoch": 1.88,
1893
+ "learning_rate": 8.261279461279462e-06,
1894
+ "loss": 0.0316,
1895
+ "step": 2740
1896
+ },
1897
+ {
1898
+ "epoch": 1.89,
1899
+ "learning_rate": 8.254545454545456e-06,
1900
+ "loss": 0.0312,
1901
+ "step": 2750
1902
+ },
1903
+ {
1904
+ "epoch": 1.9,
1905
+ "learning_rate": 8.247811447811448e-06,
1906
+ "loss": 0.0318,
1907
+ "step": 2760
1908
+ },
1909
+ {
1910
+ "epoch": 1.91,
1911
+ "learning_rate": 8.241077441077442e-06,
1912
+ "loss": 0.0322,
1913
+ "step": 2770
1914
+ },
1915
+ {
1916
+ "epoch": 1.91,
1917
+ "learning_rate": 8.234343434343434e-06,
1918
+ "loss": 0.0317,
1919
+ "step": 2780
1920
+ },
1921
+ {
1922
+ "epoch": 1.92,
1923
+ "learning_rate": 8.227609427609429e-06,
1924
+ "loss": 0.0307,
1925
+ "step": 2790
1926
+ },
1927
+ {
1928
+ "epoch": 1.93,
1929
+ "learning_rate": 8.220875420875421e-06,
1930
+ "loss": 0.0307,
1931
+ "step": 2800
1932
+ },
1933
+ {
1934
+ "epoch": 1.93,
1935
+ "eval_loss": 0.056976318359375,
1936
+ "eval_runtime": 411.91,
1937
+ "eval_samples_per_second": 7.286,
1938
+ "eval_steps_per_second": 0.058,
1939
+ "eval_wer": 25.700920102853246,
1940
+ "step": 2800
1941
+ },
1942
+ {
1943
+ "epoch": 1.93,
1944
+ "learning_rate": 8.214141414141415e-06,
1945
+ "loss": 0.0315,
1946
+ "step": 2810
1947
+ },
1948
+ {
1949
+ "epoch": 1.94,
1950
+ "learning_rate": 8.207407407407409e-06,
1951
+ "loss": 0.0307,
1952
+ "step": 2820
1953
+ },
1954
+ {
1955
+ "epoch": 1.95,
1956
+ "learning_rate": 8.200673400673402e-06,
1957
+ "loss": 0.0307,
1958
+ "step": 2830
1959
+ },
1960
+ {
1961
+ "epoch": 1.95,
1962
+ "learning_rate": 8.193939393939394e-06,
1963
+ "loss": 0.0315,
1964
+ "step": 2840
1965
+ },
1966
+ {
1967
+ "epoch": 1.96,
1968
+ "learning_rate": 8.187205387205388e-06,
1969
+ "loss": 0.03,
1970
+ "step": 2850
1971
+ },
1972
+ {
1973
+ "epoch": 1.97,
1974
+ "learning_rate": 8.18047138047138e-06,
1975
+ "loss": 0.0307,
1976
+ "step": 2860
1977
+ },
1978
+ {
1979
+ "epoch": 1.97,
1980
+ "learning_rate": 8.173737373737375e-06,
1981
+ "loss": 0.031,
1982
+ "step": 2870
1983
+ },
1984
+ {
1985
+ "epoch": 1.98,
1986
+ "learning_rate": 8.167003367003367e-06,
1987
+ "loss": 0.0317,
1988
+ "step": 2880
1989
+ },
1990
+ {
1991
+ "epoch": 1.99,
1992
+ "learning_rate": 8.160269360269361e-06,
1993
+ "loss": 0.0309,
1994
+ "step": 2890
1995
+ },
1996
+ {
1997
+ "epoch": 1.99,
1998
+ "learning_rate": 8.153535353535355e-06,
1999
+ "loss": 0.0306,
2000
+ "step": 2900
2001
+ },
2002
+ {
2003
+ "epoch": 1.99,
2004
+ "eval_loss": 0.05511474609375,
2005
+ "eval_runtime": 366.8057,
2006
+ "eval_samples_per_second": 8.181,
2007
+ "eval_steps_per_second": 0.065,
2008
+ "eval_wer": 25.691626134638618,
2009
+ "step": 2900
2010
+ },
2011
+ {
2012
+ "epoch": 2.0,
2013
+ "learning_rate": 8.146801346801347e-06,
2014
+ "loss": 0.0288,
2015
+ "step": 2910
2016
+ },
2017
+ {
2018
+ "epoch": 2.01,
2019
+ "learning_rate": 8.14006734006734e-06,
2020
+ "loss": 0.0275,
2021
+ "step": 2920
2022
+ },
2023
+ {
2024
+ "epoch": 2.02,
2025
+ "learning_rate": 8.133333333333334e-06,
2026
+ "loss": 0.0257,
2027
+ "step": 2930
2028
+ },
2029
+ {
2030
+ "epoch": 2.02,
2031
+ "learning_rate": 8.126599326599326e-06,
2032
+ "loss": 0.0273,
2033
+ "step": 2940
2034
+ },
2035
+ {
2036
+ "epoch": 2.03,
2037
+ "learning_rate": 8.11986531986532e-06,
2038
+ "loss": 0.0263,
2039
+ "step": 2950
2040
+ },
2041
+ {
2042
+ "epoch": 2.04,
2043
+ "learning_rate": 8.113131313131315e-06,
2044
+ "loss": 0.0262,
2045
+ "step": 2960
2046
+ },
2047
+ {
2048
+ "epoch": 2.04,
2049
+ "learning_rate": 8.106397306397307e-06,
2050
+ "loss": 0.027,
2051
+ "step": 2970
2052
+ },
2053
+ {
2054
+ "epoch": 2.05,
2055
+ "learning_rate": 8.099663299663301e-06,
2056
+ "loss": 0.0268,
2057
+ "step": 2980
2058
+ },
2059
+ {
2060
+ "epoch": 2.06,
2061
+ "learning_rate": 8.092929292929293e-06,
2062
+ "loss": 0.0279,
2063
+ "step": 2990
2064
+ },
2065
+ {
2066
+ "epoch": 2.06,
2067
+ "learning_rate": 8.086195286195286e-06,
2068
+ "loss": 0.0267,
2069
+ "step": 3000
2070
+ },
2071
+ {
2072
+ "epoch": 2.06,
2073
+ "eval_loss": 0.05584716796875,
2074
+ "eval_runtime": 377.5461,
2075
+ "eval_samples_per_second": 7.949,
2076
+ "eval_steps_per_second": 0.064,
2077
+ "eval_wer": 25.72570401809226,
2078
+ "step": 3000
2079
+ },
2080
+ {
2081
+ "epoch": 2.07,
2082
+ "learning_rate": 8.07946127946128e-06,
2083
+ "loss": 0.0262,
2084
+ "step": 3010
2085
+ },
2086
+ {
2087
+ "epoch": 2.08,
2088
+ "learning_rate": 8.072727272727274e-06,
2089
+ "loss": 0.0262,
2090
+ "step": 3020
2091
+ },
2092
+ {
2093
+ "epoch": 2.08,
2094
+ "learning_rate": 8.065993265993266e-06,
2095
+ "loss": 0.026,
2096
+ "step": 3030
2097
+ },
2098
+ {
2099
+ "epoch": 2.09,
2100
+ "learning_rate": 8.05925925925926e-06,
2101
+ "loss": 0.0279,
2102
+ "step": 3040
2103
+ },
2104
+ {
2105
+ "epoch": 2.1,
2106
+ "learning_rate": 8.052525252525253e-06,
2107
+ "loss": 0.0271,
2108
+ "step": 3050
2109
+ },
2110
+ {
2111
+ "epoch": 2.1,
2112
+ "learning_rate": 8.045791245791247e-06,
2113
+ "loss": 0.0261,
2114
+ "step": 3060
2115
+ },
2116
+ {
2117
+ "epoch": 2.11,
2118
+ "learning_rate": 8.03905723905724e-06,
2119
+ "loss": 0.0269,
2120
+ "step": 3070
2121
+ },
2122
+ {
2123
+ "epoch": 2.12,
2124
+ "learning_rate": 8.032323232323232e-06,
2125
+ "loss": 0.0257,
2126
+ "step": 3080
2127
+ },
2128
+ {
2129
+ "epoch": 2.13,
2130
+ "learning_rate": 8.025589225589226e-06,
2131
+ "loss": 0.0273,
2132
+ "step": 3090
2133
+ },
2134
+ {
2135
+ "epoch": 2.13,
2136
+ "learning_rate": 8.01885521885522e-06,
2137
+ "loss": 0.0262,
2138
+ "step": 3100
2139
+ },
2140
+ {
2141
+ "epoch": 2.13,
2142
+ "eval_loss": 0.054931640625,
2143
+ "eval_runtime": 389.5971,
2144
+ "eval_samples_per_second": 7.703,
2145
+ "eval_steps_per_second": 0.062,
2146
+ "eval_wer": 25.245515660336444,
2147
+ "step": 3100
2148
+ },
2149
+ {
2150
+ "epoch": 2.14,
2151
+ "learning_rate": 8.012121212121214e-06,
2152
+ "loss": 0.0259,
2153
+ "step": 3110
2154
+ },
2155
+ {
2156
+ "epoch": 2.15,
2157
+ "learning_rate": 8.005387205387206e-06,
2158
+ "loss": 0.0274,
2159
+ "step": 3120
2160
+ },
2161
+ {
2162
+ "epoch": 2.15,
2163
+ "learning_rate": 7.998653198653199e-06,
2164
+ "loss": 0.0267,
2165
+ "step": 3130
2166
+ },
2167
+ {
2168
+ "epoch": 2.16,
2169
+ "learning_rate": 7.991919191919193e-06,
2170
+ "loss": 0.0266,
2171
+ "step": 3140
2172
+ },
2173
+ {
2174
+ "epoch": 2.17,
2175
+ "learning_rate": 7.985185185185185e-06,
2176
+ "loss": 0.0268,
2177
+ "step": 3150
2178
+ },
2179
+ {
2180
+ "epoch": 2.17,
2181
+ "learning_rate": 7.97845117845118e-06,
2182
+ "loss": 0.0271,
2183
+ "step": 3160
2184
+ },
2185
+ {
2186
+ "epoch": 2.18,
2187
+ "learning_rate": 7.971717171717173e-06,
2188
+ "loss": 0.0273,
2189
+ "step": 3170
2190
+ },
2191
+ {
2192
+ "epoch": 2.19,
2193
+ "learning_rate": 7.964983164983166e-06,
2194
+ "loss": 0.027,
2195
+ "step": 3180
2196
+ },
2197
+ {
2198
+ "epoch": 2.19,
2199
+ "learning_rate": 7.95824915824916e-06,
2200
+ "loss": 0.027,
2201
+ "step": 3190
2202
+ },
2203
+ {
2204
+ "epoch": 2.2,
2205
+ "learning_rate": 7.951515151515152e-06,
2206
+ "loss": 0.0266,
2207
+ "step": 3200
2208
+ },
2209
+ {
2210
+ "epoch": 2.2,
2211
+ "eval_loss": 0.056793212890625,
2212
+ "eval_runtime": 388.5434,
2213
+ "eval_samples_per_second": 7.724,
2214
+ "eval_steps_per_second": 0.062,
2215
+ "eval_wer": 25.397317141175378,
2216
+ "step": 3200
2217
+ },
2218
+ {
2219
+ "epoch": 2.21,
2220
+ "learning_rate": 7.944781144781145e-06,
2221
+ "loss": 0.0269,
2222
+ "step": 3210
2223
+ },
2224
+ {
2225
+ "epoch": 2.21,
2226
+ "learning_rate": 7.938047138047139e-06,
2227
+ "loss": 0.0259,
2228
+ "step": 3220
2229
+ },
2230
+ {
2231
+ "epoch": 2.22,
2232
+ "learning_rate": 7.931313131313131e-06,
2233
+ "loss": 0.0262,
2234
+ "step": 3230
2235
+ },
2236
+ {
2237
+ "epoch": 2.23,
2238
+ "learning_rate": 7.924579124579125e-06,
2239
+ "loss": 0.0269,
2240
+ "step": 3240
2241
+ },
2242
+ {
2243
+ "epoch": 2.24,
2244
+ "learning_rate": 7.91784511784512e-06,
2245
+ "loss": 0.0268,
2246
+ "step": 3250
2247
+ },
2248
+ {
2249
+ "epoch": 2.24,
2250
+ "learning_rate": 7.911111111111112e-06,
2251
+ "loss": 0.0265,
2252
+ "step": 3260
2253
+ },
2254
+ {
2255
+ "epoch": 2.25,
2256
+ "learning_rate": 7.904377104377104e-06,
2257
+ "loss": 0.0263,
2258
+ "step": 3270
2259
+ },
2260
+ {
2261
+ "epoch": 2.26,
2262
+ "learning_rate": 7.897643097643098e-06,
2263
+ "loss": 0.0264,
2264
+ "step": 3280
2265
+ },
2266
+ {
2267
+ "epoch": 2.26,
2268
+ "learning_rate": 7.89090909090909e-06,
2269
+ "loss": 0.0266,
2270
+ "step": 3290
2271
+ },
2272
+ {
2273
+ "epoch": 2.27,
2274
+ "learning_rate": 7.884175084175085e-06,
2275
+ "loss": 0.0274,
2276
+ "step": 3300
2277
+ },
2278
+ {
2279
+ "epoch": 2.27,
2280
+ "eval_loss": 0.055633544921875,
2281
+ "eval_runtime": 386.9203,
2282
+ "eval_samples_per_second": 7.756,
2283
+ "eval_steps_per_second": 0.062,
2284
+ "eval_wer": 25.555314600824065,
2285
+ "step": 3300
2286
+ },
2287
+ {
2288
+ "epoch": 2.28,
2289
+ "learning_rate": 7.877441077441079e-06,
2290
+ "loss": 0.0272,
2291
+ "step": 3310
2292
+ },
2293
+ {
2294
+ "epoch": 2.28,
2295
+ "learning_rate": 7.870707070707071e-06,
2296
+ "loss": 0.0261,
2297
+ "step": 3320
2298
+ },
2299
+ {
2300
+ "epoch": 2.29,
2301
+ "learning_rate": 7.863973063973065e-06,
2302
+ "loss": 0.0262,
2303
+ "step": 3330
2304
+ },
2305
+ {
2306
+ "epoch": 2.3,
2307
+ "learning_rate": 7.857239057239058e-06,
2308
+ "loss": 0.0273,
2309
+ "step": 3340
2310
+ },
2311
+ {
2312
+ "epoch": 2.3,
2313
+ "learning_rate": 7.85050505050505e-06,
2314
+ "loss": 0.0267,
2315
+ "step": 3350
2316
+ },
2317
+ {
2318
+ "epoch": 2.31,
2319
+ "learning_rate": 7.843771043771044e-06,
2320
+ "loss": 0.0257,
2321
+ "step": 3360
2322
+ },
2323
+ {
2324
+ "epoch": 2.32,
2325
+ "learning_rate": 7.837037037037037e-06,
2326
+ "loss": 0.0253,
2327
+ "step": 3370
2328
+ },
2329
+ {
2330
+ "epoch": 2.32,
2331
+ "learning_rate": 7.83030303030303e-06,
2332
+ "loss": 0.0263,
2333
+ "step": 3380
2334
+ },
2335
+ {
2336
+ "epoch": 2.33,
2337
+ "learning_rate": 7.823569023569025e-06,
2338
+ "loss": 0.0274,
2339
+ "step": 3390
2340
+ },
2341
+ {
2342
+ "epoch": 2.34,
2343
+ "learning_rate": 7.816835016835017e-06,
2344
+ "loss": 0.0257,
2345
+ "step": 3400
2346
+ },
2347
+ {
2348
+ "epoch": 2.34,
2349
+ "eval_loss": 0.057891845703125,
2350
+ "eval_runtime": 384.8567,
2351
+ "eval_samples_per_second": 7.798,
2352
+ "eval_steps_per_second": 0.062,
2353
+ "eval_wer": 25.53672666439481,
2354
+ "step": 3400
2355
+ },
2356
+ {
2357
+ "epoch": 2.35,
2358
+ "learning_rate": 7.810101010101011e-06,
2359
+ "loss": 0.0262,
2360
+ "step": 3410
2361
+ },
2362
+ {
2363
+ "epoch": 2.35,
2364
+ "learning_rate": 7.803367003367004e-06,
2365
+ "loss": 0.0268,
2366
+ "step": 3420
2367
+ },
2368
+ {
2369
+ "epoch": 2.36,
2370
+ "learning_rate": 7.796632996632996e-06,
2371
+ "loss": 0.0269,
2372
+ "step": 3430
2373
+ },
2374
+ {
2375
+ "epoch": 2.37,
2376
+ "learning_rate": 7.78989898989899e-06,
2377
+ "loss": 0.0266,
2378
+ "step": 3440
2379
+ },
2380
+ {
2381
+ "epoch": 2.37,
2382
+ "learning_rate": 7.783164983164984e-06,
2383
+ "loss": 0.0281,
2384
+ "step": 3450
2385
+ },
2386
+ {
2387
+ "epoch": 2.38,
2388
+ "learning_rate": 7.776430976430978e-06,
2389
+ "loss": 0.0256,
2390
+ "step": 3460
2391
+ },
2392
+ {
2393
+ "epoch": 2.39,
2394
+ "learning_rate": 7.76969696969697e-06,
2395
+ "loss": 0.0265,
2396
+ "step": 3470
2397
+ },
2398
+ {
2399
+ "epoch": 2.39,
2400
+ "learning_rate": 7.762962962962963e-06,
2401
+ "loss": 0.0267,
2402
+ "step": 3480
2403
+ },
2404
+ {
2405
+ "epoch": 2.4,
2406
+ "learning_rate": 7.756228956228957e-06,
2407
+ "loss": 0.0265,
2408
+ "step": 3490
2409
+ },
2410
+ {
2411
+ "epoch": 2.41,
2412
+ "learning_rate": 7.74949494949495e-06,
2413
+ "loss": 0.0261,
2414
+ "step": 3500
2415
+ },
2416
+ {
2417
+ "epoch": 2.41,
2418
+ "eval_loss": 0.056182861328125,
2419
+ "eval_runtime": 400.7288,
2420
+ "eval_samples_per_second": 7.489,
2421
+ "eval_steps_per_second": 0.06,
2422
+ "eval_wer": 25.611078410111837,
2423
+ "step": 3500
2424
+ },
2425
+ {
2426
+ "epoch": 2.41,
2427
+ "learning_rate": 7.742760942760944e-06,
2428
+ "loss": 0.0271,
2429
+ "step": 3510
2430
+ },
2431
+ {
2432
+ "epoch": 2.42,
2433
+ "learning_rate": 7.736026936026936e-06,
2434
+ "loss": 0.0266,
2435
+ "step": 3520
2436
+ },
2437
+ {
2438
+ "epoch": 2.43,
2439
+ "learning_rate": 7.72929292929293e-06,
2440
+ "loss": 0.0261,
2441
+ "step": 3530
2442
+ },
2443
+ {
2444
+ "epoch": 2.43,
2445
+ "learning_rate": 7.722558922558924e-06,
2446
+ "loss": 0.0269,
2447
+ "step": 3540
2448
+ },
2449
+ {
2450
+ "epoch": 2.44,
2451
+ "learning_rate": 7.715824915824917e-06,
2452
+ "loss": 0.0259,
2453
+ "step": 3550
2454
+ },
2455
+ {
2456
+ "epoch": 2.45,
2457
+ "learning_rate": 7.709090909090909e-06,
2458
+ "loss": 0.0272,
2459
+ "step": 3560
2460
+ },
2461
+ {
2462
+ "epoch": 2.46,
2463
+ "learning_rate": 7.702356902356903e-06,
2464
+ "loss": 0.0277,
2465
+ "step": 3570
2466
+ },
2467
+ {
2468
+ "epoch": 2.46,
2469
+ "learning_rate": 7.695622895622896e-06,
2470
+ "loss": 0.0263,
2471
+ "step": 3580
2472
+ },
2473
+ {
2474
+ "epoch": 2.47,
2475
+ "learning_rate": 7.68888888888889e-06,
2476
+ "loss": 0.0277,
2477
+ "step": 3590
2478
+ },
2479
+ {
2480
+ "epoch": 2.48,
2481
+ "learning_rate": 7.682154882154884e-06,
2482
+ "loss": 0.0261,
2483
+ "step": 3600
2484
+ },
2485
+ {
2486
+ "epoch": 2.48,
2487
+ "eval_loss": 0.055633544921875,
2488
+ "eval_runtime": 381.8808,
2489
+ "eval_samples_per_second": 7.858,
2490
+ "eval_steps_per_second": 0.063,
2491
+ "eval_wer": 25.23931968152669,
2492
+ "step": 3600
2493
+ },
2494
+ {
2495
+ "epoch": 2.48,
2496
+ "learning_rate": 7.675420875420876e-06,
2497
+ "loss": 0.0275,
2498
+ "step": 3610
2499
+ },
2500
+ {
2501
+ "epoch": 2.49,
2502
+ "learning_rate": 7.66868686868687e-06,
2503
+ "loss": 0.0267,
2504
+ "step": 3620
2505
+ },
2506
+ {
2507
+ "epoch": 2.5,
2508
+ "learning_rate": 7.661952861952863e-06,
2509
+ "loss": 0.0264,
2510
+ "step": 3630
2511
+ },
2512
+ {
2513
+ "epoch": 2.5,
2514
+ "learning_rate": 7.655218855218855e-06,
2515
+ "loss": 0.0266,
2516
+ "step": 3640
2517
+ },
2518
+ {
2519
+ "epoch": 2.51,
2520
+ "learning_rate": 7.648484848484849e-06,
2521
+ "loss": 0.0263,
2522
+ "step": 3650
2523
+ },
2524
+ {
2525
+ "epoch": 2.52,
2526
+ "learning_rate": 7.641750841750843e-06,
2527
+ "loss": 0.0268,
2528
+ "step": 3660
2529
+ },
2530
+ {
2531
+ "epoch": 2.52,
2532
+ "learning_rate": 7.635016835016836e-06,
2533
+ "loss": 0.0269,
2534
+ "step": 3670
2535
+ },
2536
+ {
2537
+ "epoch": 2.53,
2538
+ "learning_rate": 7.628282828282829e-06,
2539
+ "loss": 0.0261,
2540
+ "step": 3680
2541
+ },
2542
+ {
2543
+ "epoch": 2.54,
2544
+ "learning_rate": 7.621548821548822e-06,
2545
+ "loss": 0.0271,
2546
+ "step": 3690
2547
+ },
2548
+ {
2549
+ "epoch": 2.54,
2550
+ "learning_rate": 7.614814814814816e-06,
2551
+ "loss": 0.0277,
2552
+ "step": 3700
2553
+ },
2554
+ {
2555
+ "epoch": 2.54,
2556
+ "eval_loss": 0.0546875,
2557
+ "eval_runtime": 370.152,
2558
+ "eval_samples_per_second": 8.107,
2559
+ "eval_steps_per_second": 0.065,
2560
+ "eval_wer": 25.62037237832647,
2561
+ "step": 3700
2562
+ },
2563
+ {
2564
+ "epoch": 2.55,
2565
+ "learning_rate": 7.6080808080808085e-06,
2566
+ "loss": 0.0266,
2567
+ "step": 3710
2568
+ },
2569
+ {
2570
+ "epoch": 2.56,
2571
+ "learning_rate": 7.601346801346802e-06,
2572
+ "loss": 0.026,
2573
+ "step": 3720
2574
+ },
2575
+ {
2576
+ "epoch": 2.57,
2577
+ "learning_rate": 7.594612794612796e-06,
2578
+ "loss": 0.0277,
2579
+ "step": 3730
2580
+ },
2581
+ {
2582
+ "epoch": 2.57,
2583
+ "learning_rate": 7.587878787878788e-06,
2584
+ "loss": 0.0274,
2585
+ "step": 3740
2586
+ },
2587
+ {
2588
+ "epoch": 2.58,
2589
+ "learning_rate": 7.5811447811447815e-06,
2590
+ "loss": 0.0263,
2591
+ "step": 3750
2592
+ },
2593
+ {
2594
+ "epoch": 2.59,
2595
+ "learning_rate": 7.574410774410776e-06,
2596
+ "loss": 0.0264,
2597
+ "step": 3760
2598
+ },
2599
+ {
2600
+ "epoch": 2.59,
2601
+ "learning_rate": 7.567676767676768e-06,
2602
+ "loss": 0.0276,
2603
+ "step": 3770
2604
+ },
2605
+ {
2606
+ "epoch": 2.6,
2607
+ "learning_rate": 7.560942760942761e-06,
2608
+ "loss": 0.0267,
2609
+ "step": 3780
2610
+ },
2611
+ {
2612
+ "epoch": 2.61,
2613
+ "learning_rate": 7.554208754208755e-06,
2614
+ "loss": 0.0262,
2615
+ "step": 3790
2616
+ },
2617
+ {
2618
+ "epoch": 2.61,
2619
+ "learning_rate": 7.547474747474748e-06,
2620
+ "loss": 0.0279,
2621
+ "step": 3800
2622
+ },
2623
+ {
2624
+ "epoch": 2.61,
2625
+ "eval_loss": 0.05615234375,
2626
+ "eval_runtime": 385.5195,
2627
+ "eval_samples_per_second": 7.784,
2628
+ "eval_steps_per_second": 0.062,
2629
+ "eval_wer": 25.524334706775303,
2630
+ "step": 3800
2631
+ },
2632
+ {
2633
+ "epoch": 2.62,
2634
+ "learning_rate": 7.540740740740742e-06,
2635
+ "loss": 0.0269,
2636
+ "step": 3810
2637
+ },
2638
+ {
2639
+ "epoch": 2.63,
2640
+ "learning_rate": 7.534006734006735e-06,
2641
+ "loss": 0.0269,
2642
+ "step": 3820
2643
+ },
2644
+ {
2645
+ "epoch": 2.63,
2646
+ "learning_rate": 7.5272727272727274e-06,
2647
+ "loss": 0.0271,
2648
+ "step": 3830
2649
+ },
2650
+ {
2651
+ "epoch": 2.64,
2652
+ "learning_rate": 7.5205387205387215e-06,
2653
+ "loss": 0.0267,
2654
+ "step": 3840
2655
+ },
2656
+ {
2657
+ "epoch": 2.65,
2658
+ "learning_rate": 7.513804713804714e-06,
2659
+ "loss": 0.0263,
2660
+ "step": 3850
2661
+ },
2662
+ {
2663
+ "epoch": 2.65,
2664
+ "learning_rate": 7.507070707070707e-06,
2665
+ "loss": 0.0285,
2666
+ "step": 3860
2667
+ },
2668
+ {
2669
+ "epoch": 2.66,
2670
+ "learning_rate": 7.500336700336701e-06,
2671
+ "loss": 0.0281,
2672
+ "step": 3870
2673
+ },
2674
+ {
2675
+ "epoch": 2.67,
2676
+ "learning_rate": 7.493602693602694e-06,
2677
+ "loss": 0.0272,
2678
+ "step": 3880
2679
+ },
2680
+ {
2681
+ "epoch": 2.68,
2682
+ "learning_rate": 7.486868686868688e-06,
2683
+ "loss": 0.0263,
2684
+ "step": 3890
2685
+ },
2686
+ {
2687
+ "epoch": 2.68,
2688
+ "learning_rate": 7.480134680134681e-06,
2689
+ "loss": 0.0274,
2690
+ "step": 3900
2691
+ },
2692
+ {
2693
+ "epoch": 2.68,
2694
+ "eval_loss": 0.056060791015625,
2695
+ "eval_runtime": 402.5369,
2696
+ "eval_samples_per_second": 7.455,
2697
+ "eval_steps_per_second": 0.06,
2698
+ "eval_wer": 25.50264878094117,
2699
+ "step": 3900
2700
+ },
2701
+ {
2702
+ "epoch": 2.69,
2703
+ "learning_rate": 7.473400673400673e-06,
2704
+ "loss": 0.0265,
2705
+ "step": 3910
2706
+ },
2707
+ {
2708
+ "epoch": 2.7,
2709
+ "learning_rate": 7.4666666666666675e-06,
2710
+ "loss": 0.0266,
2711
+ "step": 3920
2712
+ },
2713
+ {
2714
+ "epoch": 2.7,
2715
+ "learning_rate": 7.459932659932661e-06,
2716
+ "loss": 0.0264,
2717
+ "step": 3930
2718
+ },
2719
+ {
2720
+ "epoch": 2.71,
2721
+ "learning_rate": 7.453198653198653e-06,
2722
+ "loss": 0.0276,
2723
+ "step": 3940
2724
+ },
2725
+ {
2726
+ "epoch": 2.72,
2727
+ "learning_rate": 7.446464646464647e-06,
2728
+ "loss": 0.0261,
2729
+ "step": 3950
2730
+ },
2731
+ {
2732
+ "epoch": 2.72,
2733
+ "learning_rate": 7.4397306397306404e-06,
2734
+ "loss": 0.0259,
2735
+ "step": 3960
2736
+ },
2737
+ {
2738
+ "epoch": 2.73,
2739
+ "learning_rate": 7.4329966329966345e-06,
2740
+ "loss": 0.0262,
2741
+ "step": 3970
2742
+ },
2743
+ {
2744
+ "epoch": 2.74,
2745
+ "learning_rate": 7.426262626262627e-06,
2746
+ "loss": 0.0275,
2747
+ "step": 3980
2748
+ },
2749
+ {
2750
+ "epoch": 2.74,
2751
+ "learning_rate": 7.41952861952862e-06,
2752
+ "loss": 0.0269,
2753
+ "step": 3990
2754
+ },
2755
+ {
2756
+ "epoch": 2.75,
2757
+ "learning_rate": 7.412794612794613e-06,
2758
+ "loss": 0.0259,
2759
+ "step": 4000
2760
+ },
2761
+ {
2762
+ "epoch": 2.75,
2763
+ "eval_loss": 0.054962158203125,
2764
+ "eval_runtime": 389.7496,
2765
+ "eval_samples_per_second": 7.7,
2766
+ "eval_steps_per_second": 0.062,
2767
+ "eval_wer": 25.911583382384833,
2768
+ "step": 4000
2769
+ },
2770
+ {
2771
+ "epoch": 2.76,
2772
+ "learning_rate": 7.406060606060607e-06,
2773
+ "loss": 0.0268,
2774
+ "step": 4010
2775
+ },
2776
+ {
2777
+ "epoch": 2.76,
2778
+ "learning_rate": 7.3993265993266e-06,
2779
+ "loss": 0.0264,
2780
+ "step": 4020
2781
+ },
2782
+ {
2783
+ "epoch": 2.77,
2784
+ "learning_rate": 7.392592592592593e-06,
2785
+ "loss": 0.0274,
2786
+ "step": 4030
2787
+ },
2788
+ {
2789
+ "epoch": 2.78,
2790
+ "learning_rate": 7.385858585858586e-06,
2791
+ "loss": 0.0268,
2792
+ "step": 4040
2793
+ },
2794
+ {
2795
+ "epoch": 2.79,
2796
+ "learning_rate": 7.3791245791245805e-06,
2797
+ "loss": 0.0271,
2798
+ "step": 4050
2799
+ },
2800
+ {
2801
+ "epoch": 2.79,
2802
+ "learning_rate": 7.372390572390573e-06,
2803
+ "loss": 0.0261,
2804
+ "step": 4060
2805
+ },
2806
+ {
2807
+ "epoch": 2.8,
2808
+ "learning_rate": 7.365656565656566e-06,
2809
+ "loss": 0.0267,
2810
+ "step": 4070
2811
+ },
2812
+ {
2813
+ "epoch": 2.81,
2814
+ "learning_rate": 7.35892255892256e-06,
2815
+ "loss": 0.0266,
2816
+ "step": 4080
2817
+ },
2818
+ {
2819
+ "epoch": 2.81,
2820
+ "learning_rate": 7.3521885521885526e-06,
2821
+ "loss": 0.0264,
2822
+ "step": 4090
2823
+ },
2824
+ {
2825
+ "epoch": 2.82,
2826
+ "learning_rate": 7.345454545454546e-06,
2827
+ "loss": 0.0263,
2828
+ "step": 4100
2829
+ },
2830
+ {
2831
+ "epoch": 2.82,
2832
+ "eval_loss": 0.05572509765625,
2833
+ "eval_runtime": 389.9336,
2834
+ "eval_samples_per_second": 7.696,
2835
+ "eval_steps_per_second": 0.062,
2836
+ "eval_wer": 25.422101056414387,
2837
+ "step": 4100
2838
+ },
2839
+ {
2840
+ "epoch": 2.83,
2841
+ "learning_rate": 7.33872053872054e-06,
2842
+ "loss": 0.0264,
2843
+ "step": 4110
2844
+ },
2845
+ {
2846
+ "epoch": 2.83,
2847
+ "learning_rate": 7.331986531986532e-06,
2848
+ "loss": 0.0262,
2849
+ "step": 4120
2850
+ },
2851
+ {
2852
+ "epoch": 2.84,
2853
+ "learning_rate": 7.325252525252526e-06,
2854
+ "loss": 0.0257,
2855
+ "step": 4130
2856
+ },
2857
+ {
2858
+ "epoch": 2.85,
2859
+ "learning_rate": 7.31851851851852e-06,
2860
+ "loss": 0.0254,
2861
+ "step": 4140
2862
+ },
2863
+ {
2864
+ "epoch": 2.85,
2865
+ "learning_rate": 7.311784511784512e-06,
2866
+ "loss": 0.0277,
2867
+ "step": 4150
2868
+ },
2869
+ {
2870
+ "epoch": 2.86,
2871
+ "learning_rate": 7.305050505050506e-06,
2872
+ "loss": 0.0267,
2873
+ "step": 4160
2874
+ },
2875
+ {
2876
+ "epoch": 2.87,
2877
+ "learning_rate": 7.2983164983164985e-06,
2878
+ "loss": 0.0265,
2879
+ "step": 4170
2880
+ },
2881
+ {
2882
+ "epoch": 2.87,
2883
+ "learning_rate": 7.291582491582492e-06,
2884
+ "loss": 0.0258,
2885
+ "step": 4180
2886
+ },
2887
+ {
2888
+ "epoch": 2.88,
2889
+ "learning_rate": 7.284848484848486e-06,
2890
+ "loss": 0.0264,
2891
+ "step": 4190
2892
+ },
2893
+ {
2894
+ "epoch": 2.89,
2895
+ "learning_rate": 7.278114478114478e-06,
2896
+ "loss": 0.0268,
2897
+ "step": 4200
2898
+ },
2899
+ {
2900
+ "epoch": 2.89,
2901
+ "eval_loss": 0.055084228515625,
2902
+ "eval_runtime": 378.0135,
2903
+ "eval_samples_per_second": 7.939,
2904
+ "eval_steps_per_second": 0.063,
2905
+ "eval_wer": 25.23002571331206,
2906
+ "step": 4200
2907
+ },
2908
+ {
2909
+ "epoch": 2.9,
2910
+ "learning_rate": 7.2713804713804715e-06,
2911
+ "loss": 0.0282,
2912
+ "step": 4210
2913
+ },
2914
+ {
2915
+ "epoch": 2.9,
2916
+ "learning_rate": 7.2646464646464656e-06,
2917
+ "loss": 0.0271,
2918
+ "step": 4220
2919
+ },
2920
+ {
2921
+ "epoch": 2.91,
2922
+ "learning_rate": 7.257912457912458e-06,
2923
+ "loss": 0.026,
2924
+ "step": 4230
2925
+ },
2926
+ {
2927
+ "epoch": 2.92,
2928
+ "learning_rate": 7.251178451178452e-06,
2929
+ "loss": 0.0266,
2930
+ "step": 4240
2931
+ },
2932
+ {
2933
+ "epoch": 2.92,
2934
+ "learning_rate": 7.244444444444445e-06,
2935
+ "loss": 0.0265,
2936
+ "step": 4250
2937
+ },
2938
+ {
2939
+ "epoch": 2.93,
2940
+ "learning_rate": 7.237710437710438e-06,
2941
+ "loss": 0.0267,
2942
+ "step": 4260
2943
+ },
2944
+ {
2945
+ "epoch": 2.94,
2946
+ "learning_rate": 7.230976430976432e-06,
2947
+ "loss": 0.0265,
2948
+ "step": 4270
2949
+ },
2950
+ {
2951
+ "epoch": 2.94,
2952
+ "learning_rate": 7.224242424242425e-06,
2953
+ "loss": 0.0255,
2954
+ "step": 4280
2955
+ },
2956
+ {
2957
+ "epoch": 2.95,
2958
+ "learning_rate": 7.217508417508417e-06,
2959
+ "loss": 0.0257,
2960
+ "step": 4290
2961
+ },
2962
+ {
2963
+ "epoch": 2.96,
2964
+ "learning_rate": 7.2107744107744115e-06,
2965
+ "loss": 0.0265,
2966
+ "step": 4300
2967
+ },
2968
+ {
2969
+ "epoch": 2.96,
2970
+ "eval_loss": 0.05450439453125,
2971
+ "eval_runtime": 388.5783,
2972
+ "eval_samples_per_second": 7.723,
2973
+ "eval_steps_per_second": 0.062,
2974
+ "eval_wer": 25.34465132129248,
2975
+ "step": 4300
2976
+ },
2977
+ {
2978
+ "epoch": 2.96,
2979
+ "learning_rate": 7.204040404040405e-06,
2980
+ "loss": 0.0256,
2981
+ "step": 4310
2982
+ },
2983
+ {
2984
+ "epoch": 2.97,
2985
+ "learning_rate": 7.197306397306398e-06,
2986
+ "loss": 0.0271,
2987
+ "step": 4320
2988
+ },
2989
+ {
2990
+ "epoch": 2.98,
2991
+ "learning_rate": 7.190572390572391e-06,
2992
+ "loss": 0.0266,
2993
+ "step": 4330
2994
+ },
2995
+ {
2996
+ "epoch": 2.98,
2997
+ "learning_rate": 7.1838383838383845e-06,
2998
+ "loss": 0.026,
2999
+ "step": 4340
3000
+ },
3001
+ {
3002
+ "epoch": 2.99,
3003
+ "learning_rate": 7.177104377104378e-06,
3004
+ "loss": 0.0275,
3005
+ "step": 4350
3006
+ },
3007
+ {
3008
+ "epoch": 3.0,
3009
+ "learning_rate": 7.170370370370371e-06,
3010
+ "loss": 0.0272,
3011
+ "step": 4360
3012
+ },
3013
+ {
3014
+ "epoch": 3.01,
3015
+ "learning_rate": 7.163636363636363e-06,
3016
+ "loss": 0.0232,
3017
+ "step": 4370
3018
+ },
3019
+ {
3020
+ "epoch": 3.01,
3021
+ "learning_rate": 7.1569023569023574e-06,
3022
+ "loss": 0.0219,
3023
+ "step": 4380
3024
+ },
3025
+ {
3026
+ "epoch": 3.02,
3027
+ "learning_rate": 7.150168350168351e-06,
3028
+ "loss": 0.0221,
3029
+ "step": 4390
3030
+ },
3031
+ {
3032
+ "epoch": 3.03,
3033
+ "learning_rate": 7.143434343434345e-06,
3034
+ "loss": 0.0216,
3035
+ "step": 4400
3036
+ },
3037
+ {
3038
+ "epoch": 3.03,
3039
+ "eval_loss": 0.0604248046875,
3040
+ "eval_runtime": 624.2116,
3041
+ "eval_samples_per_second": 4.808,
3042
+ "eval_steps_per_second": 0.038,
3043
+ "eval_wer": 25.143282009975525,
3044
+ "step": 4400
3045
+ },
3046
+ {
3047
+ "epoch": 3.03,
3048
+ "learning_rate": 7.136700336700337e-06,
3049
+ "loss": 0.0223,
3050
+ "step": 4410
3051
+ },
3052
+ {
3053
+ "epoch": 3.04,
3054
+ "learning_rate": 7.12996632996633e-06,
3055
+ "loss": 0.0228,
3056
+ "step": 4420
3057
+ },
3058
+ {
3059
+ "epoch": 3.05,
3060
+ "learning_rate": 7.1232323232323245e-06,
3061
+ "loss": 0.0231,
3062
+ "step": 4430
3063
+ },
3064
+ {
3065
+ "epoch": 3.05,
3066
+ "learning_rate": 7.116498316498317e-06,
3067
+ "loss": 0.0224,
3068
+ "step": 4440
3069
+ },
3070
+ {
3071
+ "epoch": 3.06,
3072
+ "learning_rate": 7.10976430976431e-06,
3073
+ "loss": 0.0219,
3074
+ "step": 4450
3075
+ },
3076
+ {
3077
+ "epoch": 3.07,
3078
+ "learning_rate": 7.103030303030304e-06,
3079
+ "loss": 0.0223,
3080
+ "step": 4460
3081
+ },
3082
+ {
3083
+ "epoch": 3.07,
3084
+ "learning_rate": 7.096296296296297e-06,
3085
+ "loss": 0.0222,
3086
+ "step": 4470
3087
+ },
3088
+ {
3089
+ "epoch": 3.08,
3090
+ "learning_rate": 7.089562289562291e-06,
3091
+ "loss": 0.0223,
3092
+ "step": 4480
3093
+ },
3094
+ {
3095
+ "epoch": 3.09,
3096
+ "learning_rate": 7.082828282828283e-06,
3097
+ "loss": 0.0228,
3098
+ "step": 4490
3099
+ },
3100
+ {
3101
+ "epoch": 3.09,
3102
+ "learning_rate": 7.076094276094276e-06,
3103
+ "loss": 0.0224,
3104
+ "step": 4500
3105
+ },
3106
+ {
3107
+ "epoch": 3.09,
3108
+ "eval_loss": 0.059906005859375,
3109
+ "eval_runtime": 385.9412,
3110
+ "eval_samples_per_second": 7.776,
3111
+ "eval_steps_per_second": 0.062,
3112
+ "eval_wer": 25.406611109390003,
3113
+ "step": 4500
3114
+ },
3115
+ {
3116
+ "epoch": 3.1,
3117
+ "learning_rate": 7.0693602693602704e-06,
3118
+ "loss": 0.0227,
3119
+ "step": 4510
3120
+ },
3121
+ {
3122
+ "epoch": 3.11,
3123
+ "learning_rate": 7.062626262626263e-06,
3124
+ "loss": 0.023,
3125
+ "step": 4520
3126
+ },
3127
+ {
3128
+ "epoch": 3.12,
3129
+ "learning_rate": 7.055892255892256e-06,
3130
+ "loss": 0.0229,
3131
+ "step": 4530
3132
+ },
3133
+ {
3134
+ "epoch": 3.12,
3135
+ "learning_rate": 7.04915824915825e-06,
3136
+ "loss": 0.022,
3137
+ "step": 4540
3138
+ },
3139
+ {
3140
+ "epoch": 3.13,
3141
+ "learning_rate": 7.0424242424242426e-06,
3142
+ "loss": 0.0214,
3143
+ "step": 4550
3144
+ },
3145
+ {
3146
+ "epoch": 3.14,
3147
+ "learning_rate": 7.035690235690237e-06,
3148
+ "loss": 0.0225,
3149
+ "step": 4560
3150
+ },
3151
+ {
3152
+ "epoch": 3.14,
3153
+ "learning_rate": 7.02895622895623e-06,
3154
+ "loss": 0.022,
3155
+ "step": 4570
3156
+ },
3157
+ {
3158
+ "epoch": 3.15,
3159
+ "learning_rate": 7.022222222222222e-06,
3160
+ "loss": 0.0213,
3161
+ "step": 4580
3162
+ },
3163
+ {
3164
+ "epoch": 3.16,
3165
+ "learning_rate": 7.015488215488216e-06,
3166
+ "loss": 0.0233,
3167
+ "step": 4590
3168
+ },
3169
+ {
3170
+ "epoch": 3.16,
3171
+ "learning_rate": 7.00875420875421e-06,
3172
+ "loss": 0.0225,
3173
+ "step": 4600
3174
+ },
3175
+ {
3176
+ "epoch": 3.16,
3177
+ "eval_loss": 0.060638427734375,
3178
+ "eval_runtime": 398.8252,
3179
+ "eval_samples_per_second": 7.525,
3180
+ "eval_steps_per_second": 0.06,
3181
+ "eval_wer": 25.13089005235602,
3182
+ "step": 4600
3183
+ },
3184
+ {
3185
+ "epoch": 3.17,
3186
+ "learning_rate": 7.002020202020202e-06,
3187
+ "loss": 0.0223,
3188
+ "step": 4610
3189
+ },
3190
+ {
3191
+ "epoch": 3.18,
3192
+ "learning_rate": 6.995286195286196e-06,
3193
+ "loss": 0.0218,
3194
+ "step": 4620
3195
+ },
3196
+ {
3197
+ "epoch": 3.18,
3198
+ "learning_rate": 6.988552188552189e-06,
3199
+ "loss": 0.0218,
3200
+ "step": 4630
3201
+ },
3202
+ {
3203
+ "epoch": 3.19,
3204
+ "learning_rate": 6.981818181818183e-06,
3205
+ "loss": 0.0226,
3206
+ "step": 4640
3207
+ },
3208
+ {
3209
+ "epoch": 3.2,
3210
+ "learning_rate": 6.975084175084176e-06,
3211
+ "loss": 0.0227,
3212
+ "step": 4650
3213
+ },
3214
+ {
3215
+ "epoch": 3.2,
3216
+ "learning_rate": 6.968350168350169e-06,
3217
+ "loss": 0.0219,
3218
+ "step": 4660
3219
+ },
3220
+ {
3221
+ "epoch": 3.21,
3222
+ "learning_rate": 6.961616161616162e-06,
3223
+ "loss": 0.0223,
3224
+ "step": 4670
3225
+ },
3226
+ {
3227
+ "epoch": 3.22,
3228
+ "learning_rate": 6.9548821548821555e-06,
3229
+ "loss": 0.0222,
3230
+ "step": 4680
3231
+ },
3232
+ {
3233
+ "epoch": 3.23,
3234
+ "learning_rate": 6.948148148148148e-06,
3235
+ "loss": 0.0218,
3236
+ "step": 4690
3237
+ },
3238
+ {
3239
+ "epoch": 3.23,
3240
+ "learning_rate": 6.941414141414142e-06,
3241
+ "loss": 0.0227,
3242
+ "step": 4700
3243
+ },
3244
+ {
3245
+ "epoch": 3.23,
3246
+ "eval_loss": 0.057373046875,
3247
+ "eval_runtime": 512.6924,
3248
+ "eval_samples_per_second": 5.853,
3249
+ "eval_steps_per_second": 0.047,
3250
+ "eval_wer": 25.54292264320456,
3251
+ "step": 4700
3252
+ },
3253
+ {
3254
+ "epoch": 3.24,
3255
+ "learning_rate": 6.934680134680135e-06,
3256
+ "loss": 0.0224,
3257
+ "step": 4710
3258
+ },
3259
+ {
3260
+ "epoch": 3.25,
3261
+ "learning_rate": 6.927946127946128e-06,
3262
+ "loss": 0.022,
3263
+ "step": 4720
3264
+ },
3265
+ {
3266
+ "epoch": 3.25,
3267
+ "learning_rate": 6.921212121212122e-06,
3268
+ "loss": 0.0221,
3269
+ "step": 4730
3270
+ },
3271
+ {
3272
+ "epoch": 3.26,
3273
+ "learning_rate": 6.914478114478115e-06,
3274
+ "loss": 0.0215,
3275
+ "step": 4740
3276
+ },
3277
+ {
3278
+ "epoch": 3.27,
3279
+ "learning_rate": 6.907744107744109e-06,
3280
+ "loss": 0.0219,
3281
+ "step": 4750
3282
+ },
3283
+ {
3284
+ "epoch": 3.27,
3285
+ "learning_rate": 6.9010101010101015e-06,
3286
+ "loss": 0.0234,
3287
+ "step": 4760
3288
+ },
3289
+ {
3290
+ "epoch": 3.28,
3291
+ "learning_rate": 6.894276094276095e-06,
3292
+ "loss": 0.0233,
3293
+ "step": 4770
3294
+ },
3295
+ {
3296
+ "epoch": 3.29,
3297
+ "learning_rate": 6.887542087542089e-06,
3298
+ "loss": 0.0228,
3299
+ "step": 4780
3300
+ },
3301
+ {
3302
+ "epoch": 3.29,
3303
+ "learning_rate": 6.880808080808081e-06,
3304
+ "loss": 0.0226,
3305
+ "step": 4790
3306
+ },
3307
+ {
3308
+ "epoch": 3.3,
3309
+ "learning_rate": 6.8740740740740745e-06,
3310
+ "loss": 0.0224,
3311
+ "step": 4800
3312
+ },
3313
+ {
3314
+ "epoch": 3.3,
3315
+ "eval_loss": 0.060699462890625,
3316
+ "eval_runtime": 421.9795,
3317
+ "eval_samples_per_second": 7.112,
3318
+ "eval_steps_per_second": 0.057,
3319
+ "eval_wer": 25.357043278911984,
3320
+ "step": 4800
3321
+ },
3322
+ {
3323
+ "epoch": 3.31,
3324
+ "learning_rate": 6.867340067340068e-06,
3325
+ "loss": 0.0239,
3326
+ "step": 4810
3327
+ },
3328
+ {
3329
+ "epoch": 3.31,
3330
+ "learning_rate": 6.860606060606061e-06,
3331
+ "loss": 0.0216,
3332
+ "step": 4820
3333
+ },
3334
+ {
3335
+ "epoch": 3.32,
3336
+ "learning_rate": 6.853872053872055e-06,
3337
+ "loss": 0.0215,
3338
+ "step": 4830
3339
+ },
3340
+ {
3341
+ "epoch": 3.33,
3342
+ "learning_rate": 6.847138047138047e-06,
3343
+ "loss": 0.0226,
3344
+ "step": 4840
3345
+ },
3346
+ {
3347
+ "epoch": 3.34,
3348
+ "learning_rate": 6.840404040404041e-06,
3349
+ "loss": 0.0221,
3350
+ "step": 4850
3351
+ },
3352
+ {
3353
+ "epoch": 3.34,
3354
+ "learning_rate": 6.833670033670035e-06,
3355
+ "loss": 0.0231,
3356
+ "step": 4860
3357
+ },
3358
+ {
3359
+ "epoch": 3.35,
3360
+ "learning_rate": 6.826936026936027e-06,
3361
+ "loss": 0.0229,
3362
+ "step": 4870
3363
+ },
3364
+ {
3365
+ "epoch": 3.36,
3366
+ "learning_rate": 6.82020202020202e-06,
3367
+ "loss": 0.0225,
3368
+ "step": 4880
3369
+ },
3370
+ {
3371
+ "epoch": 3.36,
3372
+ "learning_rate": 6.8134680134680145e-06,
3373
+ "loss": 0.0223,
3374
+ "step": 4890
3375
+ },
3376
+ {
3377
+ "epoch": 3.37,
3378
+ "learning_rate": 6.806734006734007e-06,
3379
+ "loss": 0.023,
3380
+ "step": 4900
3381
+ },
3382
+ {
3383
+ "epoch": 3.37,
3384
+ "eval_loss": 0.061431884765625,
3385
+ "eval_runtime": 403.145,
3386
+ "eval_samples_per_second": 7.444,
3387
+ "eval_steps_per_second": 0.06,
3388
+ "eval_wer": 25.406611109390003,
3389
+ "step": 4900
3390
+ },
3391
+ {
3392
+ "epoch": 3.38,
3393
+ "learning_rate": 6.800000000000001e-06,
3394
+ "loss": 0.0219,
3395
+ "step": 4910
3396
+ },
3397
+ {
3398
+ "epoch": 3.38,
3399
+ "learning_rate": 6.793265993265994e-06,
3400
+ "loss": 0.0223,
3401
+ "step": 4920
3402
+ },
3403
+ {
3404
+ "epoch": 3.39,
3405
+ "learning_rate": 6.786531986531987e-06,
3406
+ "loss": 0.0223,
3407
+ "step": 4930
3408
+ },
3409
+ {
3410
+ "epoch": 3.4,
3411
+ "learning_rate": 6.779797979797981e-06,
3412
+ "loss": 0.0214,
3413
+ "step": 4940
3414
+ },
3415
+ {
3416
+ "epoch": 3.4,
3417
+ "learning_rate": 6.773063973063974e-06,
3418
+ "loss": 0.0226,
3419
+ "step": 4950
3420
+ },
3421
+ {
3422
+ "epoch": 3.41,
3423
+ "learning_rate": 6.766329966329966e-06,
3424
+ "loss": 0.0232,
3425
+ "step": 4960
3426
+ },
3427
+ {
3428
+ "epoch": 3.42,
3429
+ "learning_rate": 6.75959595959596e-06,
3430
+ "loss": 0.0222,
3431
+ "step": 4970
3432
+ },
3433
+ {
3434
+ "epoch": 3.43,
3435
+ "learning_rate": 6.752861952861953e-06,
3436
+ "loss": 0.0229,
3437
+ "step": 4980
3438
+ },
3439
+ {
3440
+ "epoch": 3.43,
3441
+ "learning_rate": 6.746127946127947e-06,
3442
+ "loss": 0.0225,
3443
+ "step": 4990
3444
+ },
3445
+ {
3446
+ "epoch": 3.44,
3447
+ "learning_rate": 6.73939393939394e-06,
3448
+ "loss": 0.0226,
3449
+ "step": 5000
3450
+ },
3451
+ {
3452
+ "epoch": 3.44,
3453
+ "eval_loss": 0.058746337890625,
3454
+ "eval_runtime": 412.3736,
3455
+ "eval_samples_per_second": 7.277,
3456
+ "eval_steps_per_second": 0.058,
3457
+ "eval_wer": 25.440688992843647,
3458
+ "step": 5000
3459
+ },
3460
+ {
3461
+ "epoch": 3.45,
3462
+ "learning_rate": 6.7326599326599325e-06,
3463
+ "loss": 0.0233,
3464
+ "step": 5010
3465
+ },
3466
+ {
3467
+ "epoch": 3.45,
3468
+ "learning_rate": 6.725925925925927e-06,
3469
+ "loss": 0.0231,
3470
+ "step": 5020
3471
+ },
3472
+ {
3473
+ "epoch": 3.46,
3474
+ "learning_rate": 6.71919191919192e-06,
3475
+ "loss": 0.0229,
3476
+ "step": 5030
3477
+ },
3478
+ {
3479
+ "epoch": 3.47,
3480
+ "learning_rate": 6.712457912457912e-06,
3481
+ "loss": 0.023,
3482
+ "step": 5040
3483
+ },
3484
+ {
3485
+ "epoch": 3.47,
3486
+ "learning_rate": 6.705723905723906e-06,
3487
+ "loss": 0.0226,
3488
+ "step": 5050
3489
+ },
3490
+ {
3491
+ "epoch": 3.48,
3492
+ "learning_rate": 6.6989898989899e-06,
3493
+ "loss": 0.0236,
3494
+ "step": 5060
3495
+ },
3496
+ {
3497
+ "epoch": 3.49,
3498
+ "learning_rate": 6.692255892255894e-06,
3499
+ "loss": 0.0224,
3500
+ "step": 5070
3501
+ },
3502
+ {
3503
+ "epoch": 3.49,
3504
+ "learning_rate": 6.685521885521886e-06,
3505
+ "loss": 0.0226,
3506
+ "step": 5080
3507
+ },
3508
+ {
3509
+ "epoch": 3.5,
3510
+ "learning_rate": 6.678787878787879e-06,
3511
+ "loss": 0.0234,
3512
+ "step": 5090
3513
+ },
3514
+ {
3515
+ "epoch": 3.51,
3516
+ "learning_rate": 6.672053872053873e-06,
3517
+ "loss": 0.0223,
3518
+ "step": 5100
3519
+ },
3520
+ {
3521
+ "epoch": 3.51,
3522
+ "eval_loss": 0.056854248046875,
3523
+ "eval_runtime": 415.0103,
3524
+ "eval_samples_per_second": 7.231,
3525
+ "eval_steps_per_second": 0.058,
3526
+ "eval_wer": 25.09991015830726,
3527
+ "step": 5100
3528
+ }
3529
+ ],
3530
+ "max_steps": 15000,
3531
+ "num_train_epochs": 11,
3532
+ "total_flos": 1.3322078469925015e+21,
3533
+ "trial_name": null,
3534
+ "trial_params": null
3535
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:069ca357d9f6d811827ef4a6784c6edd271d05884fbb70dec69f6e4faa438a1b
3
+ size 4859
vocab.json ADDED
The diff for this file is too large to render. See raw diff