--- license: apache-2.0 base_model: facebook/wav2vec2-xls-r-2b tags: - automatic-speech-recognition - DewiBrynJones/banc-trawsgrifiadau-bangor-normalized - generated_from_trainer metrics: - wer model-index: - name: wav2vec2-xls-r-2b-ft-btb-cy results: [] --- # wav2vec2-xls-r-2b-ft-btb-cy This model is a fine-tuned version of [facebook/wav2vec2-xls-r-2b](https://huggingface.co/facebook/wav2vec2-xls-r-2b) on the DEWIBRYNJONES/BANC-TRAWSGRIFIADAU-BANGOR-NORMALIZED - DEFAULT dataset. It achieves the following results on the evaluation set: - Loss: 0.3903 - Wer: 0.2957 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 2500 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | No log | 0.1414 | 100 | 1.2105 | 0.8709 | | No log | 0.2829 | 200 | 0.9787 | 0.6986 | | No log | 0.4243 | 300 | 1.1907 | 0.7127 | | No log | 0.5658 | 400 | 1.0559 | 0.7169 | | 1.4456 | 0.7072 | 500 | 1.2106 | 0.7944 | | 1.4456 | 0.8487 | 600 | 1.0232 | 0.7033 | | 1.4456 | 0.9901 | 700 | 1.0387 | 0.7336 | | 1.4456 | 1.1315 | 800 | 0.7234 | 0.5223 | | 1.4456 | 1.2730 | 900 | 0.7242 | 0.5566 | | 0.9155 | 1.4144 | 1000 | 0.7097 | 0.5259 | | 0.9155 | 1.5559 | 1100 | 0.6368 | 0.4797 | | 0.9155 | 1.6973 | 1200 | 0.6065 | 0.4653 | | 0.9155 | 1.8388 | 1300 | 0.6207 | 0.4717 | | 0.9155 | 1.9802 | 1400 | 0.5925 | 0.4707 | | 0.7436 | 2.1216 | 1500 | 0.5382 | 0.4046 | | 0.7436 | 2.2631 | 1600 | 0.5201 | 0.3996 | | 0.7436 | 2.4045 | 1700 | 0.4883 | 0.3698 | | 0.7436 | 2.5460 | 1800 | 0.4704 | 0.3659 | | 0.7436 | 2.6874 | 1900 | 0.4443 | 0.3521 | | 0.5645 | 2.8289 | 2000 | 0.4470 | 0.3476 | | 0.5645 | 2.9703 | 2100 | 0.4192 | 0.3242 | | 0.5645 | 3.1117 | 2200 | 0.4178 | 0.3161 | | 0.5645 | 3.2532 | 2300 | 0.4122 | 0.3054 | | 0.5645 | 3.3946 | 2400 | 0.3960 | 0.2990 | | 0.4232 | 3.5361 | 2500 | 0.3903 | 0.2957 | ### Framework versions - Transformers 4.40.2 - Pytorch 2.3.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1