--- license: apache-2.0 base_model: bert-large-uncased tags: - generated_from_keras_callback model-index: - name: bert-large-model results: [] --- # bert-large-model This model is a fine-tuned version of [bert-large-uncased](https://huggingface.co/bert-large-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.5285 - Train Accuracy: 0.6667 - Validation Loss: 0.6526 - Validation Accuracy: 1.0 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': False, 'is_legacy_optimizer': False, 'learning_rate': 2e-05, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch | |:----------:|:--------------:|:---------------:|:-------------------:|:-----:| | 0.6872 | 0.6667 | 0.5984 | 1.0 | 0 | | 0.5637 | 0.6667 | 0.6125 | 1.0 | 1 | | 0.5285 | 0.6667 | 0.6526 | 1.0 | 2 | ### Framework versions - Transformers 4.40.0 - TensorFlow 2.15.0 - Tokenizers 0.19.1