UI_card_mapping / inference.py
DinoLiu's picture
update
5aa95d8
raw
history blame
5.69 kB
import os
import json
import torch
import numpy as np
from transformers import BertTokenizer
from sklearn.preprocessing import OneHotEncoder
import transformers
import torch
import torch.nn as nn
import torch.nn.functional as F
class AttentionPool(nn.Module):
def __init__(self, hidden_size):
super().__init__()
self.attention = nn.Linear(hidden_size, 1)
def forward(self, last_hidden_state):
attention_scores = self.attention(last_hidden_state).squeeze(-1)
attention_weights = F.softmax(attention_scores, dim=1)
pooled_output = torch.bmm(attention_weights.unsqueeze(1), last_hidden_state).squeeze(1)
return pooled_output
class MultiSampleDropout(nn.Module):
def __init__(self, dropout=0.5, num_samples=5):
super().__init__()
self.dropout = nn.Dropout(dropout)
self.num_samples = num_samples
def forward(self, x):
return torch.mean(torch.stack([self.dropout(x) for _ in range(self.num_samples)]), dim=0)
class ImprovedBERTClass(nn.Module):
def __init__(self, num_classes=13):
super().__init__()
self.bert = transformers.BertModel.from_pretrained('bert-base-uncased')
self.attention_pool = AttentionPool(768)
self.dropout = MultiSampleDropout()
self.norm = nn.LayerNorm(768)
self.classifier = nn.Linear(768, num_classes)
def forward(self, input_ids, attention_mask, token_type_ids):
bert_output = self.bert(input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids)
pooled_output = self.attention_pool(bert_output.last_hidden_state)
pooled_output = self.dropout(pooled_output)
pooled_output = self.norm(pooled_output)
logits = self.classifier(pooled_output)
return logits
def handler(data, context):
"""Handle incoming requests to the SageMaker endpoint."""
if context.request_content_type != 'application/json':
raise ValueError("This model only supports application/json input")
# Set up device
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Load model and tokenizer (consider caching these for better performance)
model, tokenizer = load_model_and_tokenizer(context)
# Process the input data
input_data = json.loads(data.read().decode('utf-8'))
query = input_data.get('text', '')
k = input_data.get('k', 3) # Default to top 3 if not specified
# Tokenize and prepare the input
inputs = tokenizer.encode_plus(
query,
add_special_tokens=True,
max_length=64,
padding='max_length',
return_tensors='pt',
truncation=True
)
ids = inputs['input_ids'].to(device, dtype=torch.long)
mask = inputs['attention_mask'].to(device, dtype=torch.long)
token_type_ids = inputs['token_type_ids'].to(device, dtype=torch.long)
# Make the prediction
model.eval()
with torch.no_grad():
outputs = model(ids, mask, token_type_ids)
# Apply sigmoid for multi-label classification
probabilities = torch.sigmoid(outputs)
# Convert to numpy array
probabilities = probabilities.cpu().detach().numpy().flatten()
# Get top k predictions
top_k_indices = np.argsort(probabilities)[-k:][::-1]
top_k_probs = probabilities[top_k_indices]
# Create one-hot encodings for top k indices
top_k_one_hot = np.zeros((k, len(probabilities)))
for i, idx in enumerate(top_k_indices):
top_k_one_hot[i, idx] = 1
# Decode the top k predictions
top_k_cards = [decode_vector(one_hot.reshape(1, -1)) for one_hot in top_k_one_hot]
# Create a list of tuples (card, probability) for top k predictions
top_k_predictions = list(zip(top_k_cards, top_k_probs.tolist()))
# Determine the most likely card
predicted_labels = (probabilities > 0.5).astype(int)
if sum(predicted_labels) == 0:
most_likely_card = "Answer"
else:
most_likely_card = decode_vector(predicted_labels.reshape(1, -1))
# Prepare the response
result = {
"most_likely_card": most_likely_card,
"top_k_predictions": top_k_predictions
}
return json.dumps(result), 'application/json'
def load_model_and_tokenizer(context):
"""Load the PyTorch model and tokenizer."""
global global_encoder
labels = ['Videos', 'Unit Conversion', 'Translation', 'Shopping Product Comparison', 'Restaurants', 'Product', 'Information', 'Images', 'Gift', 'General Comparison', 'Flights', 'Answer', 'Aircraft Seat Map']
model_dir = context.model_dir if hasattr(context, 'model_dir') else os.environ.get('SM_MODEL_DIR', '/opt/ml/model')
# Load config and model
config_path = os.path.join(model_dir, 'config.json')
model_path = os.path.join(model_dir, 'model.pth')
with open(config_path, 'r') as f:
config = json.load(f)
# Initialize the encoder and labels
global_labels = labels
labels_np = np.array(global_labels).reshape(-1, 1)
global_encoder = OneHotEncoder(sparse_output=False)
global_encoder.fit(labels_np)
model = ImprovedBERTClass()
model.load_state_dict(torch.load(model_path, map_location=torch.device('cpu')))
model.to(torch.device("cuda" if torch.cuda.is_available() else "cpu"))
model.eval()
# Load tokenizer
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
return model, tokenizer
def decode_vector(vector):
global global_encoder
original_label = global_encoder.inverse_transform(vector)
return original_label[0][0] # Returns the label as a string