|
import os |
|
import sys |
|
import json |
|
import torch |
|
from ts.torch_handler.base_handler import BaseHandler |
|
from transformers import BertTokenizer |
|
|
|
|
|
model_dir = os.path.dirname(os.path.abspath(__file__)) |
|
sys.path.append(model_dir) |
|
|
|
from model import ImprovedBERTClass |
|
|
|
class UICardMappingHandler(BaseHandler): |
|
def __init__(self): |
|
super().__init__() |
|
self.initialized = False |
|
|
|
def initialize(self, context): |
|
self.manifest = context.manifest |
|
properties = context.system_properties |
|
model_dir = properties.get("model_dir") |
|
self.device = torch.device("cuda:" + str(properties.get("gpu_id")) if torch.cuda.is_available() else "cpu") |
|
|
|
self.tokenizer = BertTokenizer.from_pretrained(model_dir) |
|
self.model = ImprovedBERTClass() |
|
self.model.load_state_dict(torch.load(os.path.join(model_dir, 'model.pth'), map_location=self.device)) |
|
self.model.to(self.device) |
|
self.model.eval() |
|
|
|
self.initialized = True |
|
|
|
def preprocess(self, data): |
|
text = data[0].get("data") |
|
if text is None: |
|
text = data[0].get("body") |
|
inputs = self.tokenizer(text, return_tensors="pt", max_length=64, padding='max_length', truncation=True) |
|
return inputs.to(self.device) |
|
|
|
def inference(self, inputs): |
|
with torch.no_grad(): |
|
outputs = self.model(**inputs) |
|
return torch.sigmoid(outputs.logits) |
|
|
|
def postprocess(self, inference_output): |
|
probabilities = inference_output.cpu().numpy().flatten() |
|
labels = ['Videos', 'Unit Conversion', 'Translation', 'Shopping Product Comparison', 'Restaurants', 'Product', 'Information', 'Images', 'Gift', 'General Comparison', 'Flights', 'Answer', 'Aircraft Seat Map'] |
|
|
|
top_k = 3 |
|
top_k_indices = probabilities.argsort()[-top_k:][::-1] |
|
top_k_probs = probabilities[top_k_indices] |
|
|
|
top_k_predictions = [{"card": labels[i], "probability": float(p)} for i, p in zip(top_k_indices, top_k_probs)] |
|
|
|
most_likely_card = "Answer" if sum(probabilities > 0.5) == 0 else labels[probabilities.argmax()] |
|
|
|
result = { |
|
"most_likely_card": most_likely_card, |
|
"top_k_predictions": top_k_predictions |
|
} |
|
|
|
return [result] |
|
|