update
Browse files- inference.py +53 -147
inference.py
CHANGED
@@ -1,156 +1,62 @@
|
|
1 |
import os
|
|
|
2 |
import json
|
3 |
import torch
|
4 |
-
|
5 |
from transformers import BertTokenizer
|
6 |
-
from sklearn.preprocessing import OneHotEncoder
|
7 |
-
import transformers
|
8 |
-
import torch
|
9 |
-
import torch.nn as nn
|
10 |
-
import torch.nn.functional as F
|
11 |
-
|
12 |
-
class AttentionPool(nn.Module):
|
13 |
-
def __init__(self, hidden_size):
|
14 |
-
super().__init__()
|
15 |
-
self.attention = nn.Linear(hidden_size, 1)
|
16 |
-
|
17 |
-
def forward(self, last_hidden_state):
|
18 |
-
attention_scores = self.attention(last_hidden_state).squeeze(-1)
|
19 |
-
attention_weights = F.softmax(attention_scores, dim=1)
|
20 |
-
pooled_output = torch.bmm(attention_weights.unsqueeze(1), last_hidden_state).squeeze(1)
|
21 |
-
return pooled_output
|
22 |
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
self.dropout = nn.Dropout(dropout)
|
27 |
-
self.num_samples = num_samples
|
28 |
-
|
29 |
-
def forward(self, x):
|
30 |
-
return torch.mean(torch.stack([self.dropout(x) for _ in range(self.num_samples)]), dim=0)
|
31 |
|
|
|
32 |
|
33 |
-
class
|
34 |
-
def __init__(self
|
35 |
super().__init__()
|
36 |
-
self.
|
37 |
-
|
38 |
-
|
39 |
-
self.
|
40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
# Set up device
|
57 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
58 |
-
|
59 |
-
# Load model and tokenizer (consider caching these for better performance)
|
60 |
-
model, tokenizer = load_model_and_tokenizer(context)
|
61 |
-
|
62 |
-
# Process the input data
|
63 |
-
input_data = json.loads(data.read().decode('utf-8'))
|
64 |
-
query = input_data.get('text', '')
|
65 |
-
k = input_data.get('k', 3) # Default to top 3 if not specified
|
66 |
-
|
67 |
-
# Tokenize and prepare the input
|
68 |
-
inputs = tokenizer.encode_plus(
|
69 |
-
query,
|
70 |
-
add_special_tokens=True,
|
71 |
-
max_length=64,
|
72 |
-
padding='max_length',
|
73 |
-
return_tensors='pt',
|
74 |
-
truncation=True
|
75 |
-
)
|
76 |
-
ids = inputs['input_ids'].to(device, dtype=torch.long)
|
77 |
-
mask = inputs['attention_mask'].to(device, dtype=torch.long)
|
78 |
-
token_type_ids = inputs['token_type_ids'].to(device, dtype=torch.long)
|
79 |
-
|
80 |
-
# Make the prediction
|
81 |
-
model.eval()
|
82 |
-
with torch.no_grad():
|
83 |
-
outputs = model(ids, mask, token_type_ids)
|
84 |
-
|
85 |
-
# Apply sigmoid for multi-label classification
|
86 |
-
probabilities = torch.sigmoid(outputs)
|
87 |
-
|
88 |
-
# Convert to numpy array
|
89 |
-
probabilities = probabilities.cpu().detach().numpy().flatten()
|
90 |
-
|
91 |
-
# Get top k predictions
|
92 |
-
top_k_indices = np.argsort(probabilities)[-k:][::-1]
|
93 |
-
top_k_probs = probabilities[top_k_indices]
|
94 |
-
|
95 |
-
# Create one-hot encodings for top k indices
|
96 |
-
top_k_one_hot = np.zeros((k, len(probabilities)))
|
97 |
-
for i, idx in enumerate(top_k_indices):
|
98 |
-
top_k_one_hot[i, idx] = 1
|
99 |
-
|
100 |
-
# Decode the top k predictions
|
101 |
-
top_k_cards = [decode_vector(one_hot.reshape(1, -1)) for one_hot in top_k_one_hot]
|
102 |
-
|
103 |
-
# Create a list of tuples (card, probability) for top k predictions
|
104 |
-
top_k_predictions = list(zip(top_k_cards, top_k_probs.tolist()))
|
105 |
-
|
106 |
-
# Determine the most likely card
|
107 |
-
predicted_labels = (probabilities > 0.5).astype(int)
|
108 |
-
if sum(predicted_labels) == 0:
|
109 |
-
most_likely_card = "Answer"
|
110 |
-
else:
|
111 |
-
most_likely_card = decode_vector(predicted_labels.reshape(1, -1))
|
112 |
-
|
113 |
-
# Prepare the response
|
114 |
-
result = {
|
115 |
-
"most_likely_card": most_likely_card,
|
116 |
-
"top_k_predictions": top_k_predictions
|
117 |
-
}
|
118 |
-
|
119 |
-
return json.dumps(result), 'application/json'
|
120 |
-
|
121 |
-
|
122 |
-
def load_model_and_tokenizer(context):
|
123 |
-
"""Load the PyTorch model and tokenizer."""
|
124 |
-
global global_encoder
|
125 |
-
labels = ['Videos', 'Unit Conversion', 'Translation', 'Shopping Product Comparison', 'Restaurants', 'Product', 'Information', 'Images', 'Gift', 'General Comparison', 'Flights', 'Answer', 'Aircraft Seat Map']
|
126 |
-
|
127 |
-
model_dir = context.model_dir if hasattr(context, 'model_dir') else os.environ.get('SM_MODEL_DIR', '/opt/ml/model')
|
128 |
-
|
129 |
-
# Load config and model
|
130 |
-
config_path = os.path.join(model_dir, 'config.json')
|
131 |
-
model_path = os.path.join(model_dir, 'model.pth')
|
132 |
-
|
133 |
-
with open(config_path, 'r') as f:
|
134 |
-
config = json.load(f)
|
135 |
-
|
136 |
-
# Initialize the encoder and labels
|
137 |
-
global_labels = labels
|
138 |
-
labels_np = np.array(global_labels).reshape(-1, 1)
|
139 |
-
global_encoder = OneHotEncoder(sparse_output=False)
|
140 |
-
global_encoder.fit(labels_np)
|
141 |
-
|
142 |
-
model = ImprovedBERTClass()
|
143 |
-
model.load_state_dict(torch.load(model_path, map_location=torch.device('cpu')))
|
144 |
-
model.to(torch.device("cuda" if torch.cuda.is_available() else "cpu"))
|
145 |
-
model.eval()
|
146 |
-
|
147 |
-
# Load tokenizer
|
148 |
-
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
|
149 |
-
|
150 |
-
return model, tokenizer
|
151 |
-
|
152 |
-
|
153 |
-
def decode_vector(vector):
|
154 |
-
global global_encoder
|
155 |
-
original_label = global_encoder.inverse_transform(vector)
|
156 |
-
return original_label[0][0] # Returns the label as a string
|
|
|
1 |
import os
|
2 |
+
import sys
|
3 |
import json
|
4 |
import torch
|
5 |
+
from ts.torch_handler.base_handler import BaseHandler
|
6 |
from transformers import BertTokenizer
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
+
# Add the model directory to the Python path
|
9 |
+
model_dir = os.path.dirname(os.path.abspath(__file__))
|
10 |
+
sys.path.append(model_dir)
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
+
from model import ImprovedBERTClass # Ensure this import matches your model file name
|
13 |
|
14 |
+
class UICardMappingHandler(BaseHandler):
|
15 |
+
def __init__(self):
|
16 |
super().__init__()
|
17 |
+
self.initialized = False
|
18 |
+
|
19 |
+
def initialize(self, context):
|
20 |
+
self.manifest = context.manifest
|
21 |
+
properties = context.system_properties
|
22 |
+
model_dir = properties.get("model_dir")
|
23 |
+
self.device = torch.device("cuda:" + str(properties.get("gpu_id")) if torch.cuda.is_available() else "cpu")
|
24 |
+
|
25 |
+
self.tokenizer = BertTokenizer.from_pretrained(model_dir)
|
26 |
+
self.model = ImprovedBERTClass()
|
27 |
+
self.model.load_state_dict(torch.load(os.path.join(model_dir, 'model.pth'), map_location=self.device))
|
28 |
+
self.model.to(self.device)
|
29 |
+
self.model.eval()
|
30 |
+
|
31 |
+
self.initialized = True
|
32 |
+
|
33 |
+
def preprocess(self, data):
|
34 |
+
text = data[0].get("data")
|
35 |
+
if text is None:
|
36 |
+
text = data[0].get("body")
|
37 |
+
inputs = self.tokenizer(text, return_tensors="pt", max_length=64, padding='max_length', truncation=True)
|
38 |
+
return inputs.to(self.device)
|
39 |
+
|
40 |
+
def inference(self, inputs):
|
41 |
+
with torch.no_grad():
|
42 |
+
outputs = self.model(**inputs)
|
43 |
+
return torch.sigmoid(outputs.logits)
|
44 |
+
|
45 |
+
def postprocess(self, inference_output):
|
46 |
+
probabilities = inference_output.cpu().numpy().flatten()
|
47 |
+
labels = ['Videos', 'Unit Conversion', 'Translation', 'Shopping Product Comparison', 'Restaurants', 'Product', 'Information', 'Images', 'Gift', 'General Comparison', 'Flights', 'Answer', 'Aircraft Seat Map']
|
48 |
|
49 |
+
top_k = 3 # You can adjust this value
|
50 |
+
top_k_indices = probabilities.argsort()[-top_k:][::-1]
|
51 |
+
top_k_probs = probabilities[top_k_indices]
|
52 |
+
|
53 |
+
top_k_predictions = [{"card": labels[i], "probability": float(p)} for i, p in zip(top_k_indices, top_k_probs)]
|
54 |
+
|
55 |
+
most_likely_card = "Answer" if sum(probabilities > 0.5) == 0 else labels[probabilities.argmax()]
|
56 |
+
|
57 |
+
result = {
|
58 |
+
"most_likely_card": most_likely_card,
|
59 |
+
"top_k_predictions": top_k_predictions
|
60 |
+
}
|
61 |
+
|
62 |
+
return [result]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|