import os import sys import json import torch from ts.torch_handler.base_handler import BaseHandler from transformers import BertTokenizer # Add the model directory to the Python path model_dir = os.path.dirname(os.path.abspath(__file__)) sys.path.append(model_dir) from model import ImprovedBERTClass # Ensure this import matches your model file name class UICardMappingHandler(BaseHandler): def __init__(self): super().__init__() self.initialized = False def initialize(self, context): self.manifest = context.manifest properties = context.system_properties model_dir = properties.get("model_dir") self.device = torch.device("cuda:" + str(properties.get("gpu_id")) if torch.cuda.is_available() else "cpu") self.tokenizer = BertTokenizer.from_pretrained(model_dir) self.model = ImprovedBERTClass() self.model.load_state_dict(torch.load(os.path.join(model_dir, 'model.pth'), map_location=self.device)) self.model.to(self.device) self.model.eval() self.initialized = True def preprocess(self, data): text = data[0].get("data") if text is None: text = data[0].get("body") inputs = self.tokenizer(text, return_tensors="pt", max_length=64, padding='max_length', truncation=True) return inputs.to(self.device) def inference(self, inputs): with torch.no_grad(): outputs = self.model(**inputs) return torch.sigmoid(outputs.logits) def postprocess(self, inference_output): probabilities = inference_output.cpu().numpy().flatten() labels = ['Videos', 'Unit Conversion', 'Translation', 'Shopping Product Comparison', 'Restaurants', 'Product', 'Information', 'Images', 'Gift', 'General Comparison', 'Flights', 'Answer', 'Aircraft Seat Map'] top_k = 3 # You can adjust this value top_k_indices = probabilities.argsort()[-top_k:][::-1] top_k_probs = probabilities[top_k_indices] top_k_predictions = [{"card": labels[i], "probability": float(p)} for i, p in zip(top_k_indices, top_k_probs)] most_likely_card = "Answer" if sum(probabilities > 0.5) == 0 else labels[probabilities.argmax()] result = { "most_likely_card": most_likely_card, "top_k_predictions": top_k_predictions } return [result]