DipakBundheliya
commited on
Commit
•
ad540e3
1
Parent(s):
8766e24
upload all files
Browse files- final-model.pt +3 -0
- loss.tsv +440 -0
- test.tsv +23 -0
- training.log +851 -0
final-model.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2890f63e74a1163fb3d9beff5e49d58f6352c56b8bfc49d9db6c593cf6b038c9
|
3 |
+
size 414177841
|
loss.tsv
ADDED
@@ -0,0 +1,440 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
EPOCH TIMESTAMP LEARNING_RATE TRAIN_LOSS
|
2 |
+
1 09:01:40 0.1000 1.3988
|
3 |
+
2 09:01:40 0.1000 1.3727
|
4 |
+
3 09:01:40 0.1000 1.2696
|
5 |
+
4 09:01:41 0.1000 1.2418
|
6 |
+
5 09:01:41 0.1000 1.1899
|
7 |
+
6 09:01:41 0.1000 1.1954
|
8 |
+
7 09:01:41 0.1000 1.1707
|
9 |
+
8 09:01:41 0.1000 1.1064
|
10 |
+
9 09:01:41 0.1000 1.0625
|
11 |
+
10 09:01:41 0.1000 1.0760
|
12 |
+
11 09:01:41 0.1000 1.0629
|
13 |
+
12 09:01:41 0.1000 1.0750
|
14 |
+
13 09:01:42 0.1000 1.0582
|
15 |
+
14 09:01:42 0.1000 1.0248
|
16 |
+
15 09:01:42 0.1000 1.0426
|
17 |
+
16 09:01:42 0.1000 0.9756
|
18 |
+
17 09:01:42 0.1000 0.9590
|
19 |
+
18 09:01:42 0.1000 0.9544
|
20 |
+
19 09:01:42 0.1000 0.9456
|
21 |
+
20 09:01:42 0.1000 0.9356
|
22 |
+
21 09:01:43 0.1000 0.9424
|
23 |
+
22 09:01:43 0.1000 0.9039
|
24 |
+
23 09:01:43 0.1000 0.8546
|
25 |
+
24 09:01:43 0.1000 0.9186
|
26 |
+
25 09:01:43 0.1000 0.8713
|
27 |
+
26 09:01:43 0.1000 0.8544
|
28 |
+
27 09:01:43 0.1000 0.8883
|
29 |
+
28 09:01:43 0.1000 0.8272
|
30 |
+
29 09:01:43 0.1000 0.8388
|
31 |
+
30 09:01:44 0.1000 0.8102
|
32 |
+
31 09:01:44 0.1000 0.7929
|
33 |
+
32 09:01:44 0.1000 0.8280
|
34 |
+
33 09:01:44 0.1000 0.7546
|
35 |
+
34 09:01:44 0.1000 0.8275
|
36 |
+
35 09:01:44 0.1000 0.7638
|
37 |
+
36 09:01:44 0.1000 0.7296
|
38 |
+
37 09:01:44 0.1000 0.7602
|
39 |
+
38 09:01:45 0.1000 0.8105
|
40 |
+
39 09:01:45 0.1000 0.7128
|
41 |
+
40 09:01:45 0.1000 0.7117
|
42 |
+
41 09:01:45 0.1000 0.6716
|
43 |
+
42 09:01:45 0.1000 0.7053
|
44 |
+
43 09:01:45 0.1000 0.6681
|
45 |
+
44 09:01:45 0.1000 0.6877
|
46 |
+
45 09:01:45 0.1000 0.6476
|
47 |
+
46 09:01:45 0.1000 0.6773
|
48 |
+
47 09:01:46 0.1000 0.6355
|
49 |
+
48 09:01:46 0.1000 0.6460
|
50 |
+
49 09:01:46 0.1000 0.6487
|
51 |
+
50 09:01:46 0.1000 0.6570
|
52 |
+
51 09:01:46 0.1000 0.6372
|
53 |
+
52 09:01:46 0.0500 0.6392
|
54 |
+
53 09:01:46 0.0500 0.6445
|
55 |
+
54 09:01:46 0.0500 0.6023
|
56 |
+
55 09:01:46 0.0500 0.5893
|
57 |
+
56 09:01:47 0.0500 0.5852
|
58 |
+
57 09:01:47 0.0500 0.5726
|
59 |
+
58 09:01:47 0.0500 0.6017
|
60 |
+
59 09:01:47 0.0500 0.6023
|
61 |
+
60 09:01:47 0.0500 0.5850
|
62 |
+
61 09:01:47 0.0500 0.5841
|
63 |
+
62 09:01:47 0.0250 0.5914
|
64 |
+
63 09:01:47 0.0250 0.5690
|
65 |
+
64 09:01:48 0.0250 0.5622
|
66 |
+
65 09:01:48 0.0250 0.5676
|
67 |
+
66 09:01:48 0.0250 0.5915
|
68 |
+
67 09:01:48 0.0250 0.5469
|
69 |
+
68 09:01:48 0.0250 0.5382
|
70 |
+
69 09:01:48 0.0250 0.5400
|
71 |
+
70 09:01:48 0.0250 0.5224
|
72 |
+
71 09:01:48 0.0250 0.5385
|
73 |
+
72 09:01:48 0.0250 0.5648
|
74 |
+
73 09:01:49 0.0250 0.5767
|
75 |
+
74 09:01:49 0.0250 0.5428
|
76 |
+
75 09:01:49 0.0125 0.5439
|
77 |
+
76 09:01:49 0.0125 0.5373
|
78 |
+
77 09:01:49 0.0125 0.5596
|
79 |
+
78 09:01:49 0.0125 0.5375
|
80 |
+
79 09:01:49 0.0063 0.5350
|
81 |
+
80 09:01:49 0.0063 0.5264
|
82 |
+
81 09:01:50 0.0063 0.5223
|
83 |
+
82 09:01:50 0.0063 0.5814
|
84 |
+
83 09:01:50 0.0063 0.5301
|
85 |
+
84 09:01:50 0.0063 0.5303
|
86 |
+
85 09:01:50 0.0063 0.5395
|
87 |
+
86 09:01:50 0.0031 0.5398
|
88 |
+
87 09:01:50 0.0031 0.5396
|
89 |
+
88 09:01:50 0.0031 0.5291
|
90 |
+
89 09:01:50 0.0031 0.5665
|
91 |
+
90 09:01:51 0.0016 0.5175
|
92 |
+
91 09:01:51 0.0016 0.5550
|
93 |
+
92 09:01:51 0.0016 0.5266
|
94 |
+
93 09:01:51 0.0016 0.5216
|
95 |
+
94 09:01:51 0.0016 0.5531
|
96 |
+
95 09:01:51 0.0008 0.4987
|
97 |
+
96 09:01:52 0.0008 0.5343
|
98 |
+
97 09:01:52 0.0008 0.5353
|
99 |
+
98 09:01:52 0.0008 0.5574
|
100 |
+
99 09:01:52 0.0008 0.5355
|
101 |
+
100 09:01:52 0.0004 0.5348
|
102 |
+
101 09:01:52 0.0004 0.5369
|
103 |
+
102 09:01:53 0.0004 0.5001
|
104 |
+
103 09:01:53 0.0004 0.5230
|
105 |
+
104 09:01:53 0.0002 0.5215
|
106 |
+
105 09:01:53 0.0002 0.5256
|
107 |
+
106 09:01:53 0.0002 0.5061
|
108 |
+
EPOCH TIMESTAMP LEARNING_RATE TRAIN_LOSS
|
109 |
+
1 09:03:20 0.1000 3.6329
|
110 |
+
2 09:03:21 0.1000 2.6278
|
111 |
+
3 09:03:21 0.1000 2.5383
|
112 |
+
4 09:03:21 0.1000 2.4292
|
113 |
+
5 09:03:21 0.1000 2.3756
|
114 |
+
6 09:03:21 0.1000 2.3379
|
115 |
+
7 09:03:21 0.1000 2.1906
|
116 |
+
8 09:03:22 0.1000 2.1218
|
117 |
+
9 09:03:22 0.1000 1.8981
|
118 |
+
10 09:03:22 0.1000 1.8051
|
119 |
+
11 09:03:22 0.1000 1.7502
|
120 |
+
12 09:03:22 0.1000 1.6432
|
121 |
+
13 09:03:23 0.1000 1.5516
|
122 |
+
14 09:03:23 0.1000 1.5723
|
123 |
+
15 09:03:23 0.1000 1.3738
|
124 |
+
16 09:03:23 0.1000 1.3903
|
125 |
+
17 09:03:23 0.1000 1.3732
|
126 |
+
18 09:03:23 0.1000 1.2646
|
127 |
+
19 09:03:24 0.1000 1.1458
|
128 |
+
20 09:03:24 0.1000 1.2611
|
129 |
+
21 09:03:24 0.1000 1.1621
|
130 |
+
22 09:03:24 0.1000 1.1001
|
131 |
+
23 09:03:24 0.1000 1.0846
|
132 |
+
24 09:03:25 0.1000 0.9794
|
133 |
+
25 09:03:25 0.1000 0.9842
|
134 |
+
26 09:03:25 0.1000 0.8944
|
135 |
+
27 09:03:25 0.1000 0.9568
|
136 |
+
28 09:03:25 0.1000 0.8847
|
137 |
+
29 09:03:26 0.1000 0.9192
|
138 |
+
30 09:03:26 0.1000 0.7670
|
139 |
+
31 09:03:26 0.1000 0.8132
|
140 |
+
32 09:03:26 0.1000 0.8679
|
141 |
+
33 09:03:26 0.1000 0.8271
|
142 |
+
34 09:03:27 0.1000 0.8223
|
143 |
+
35 09:03:27 0.0500 0.6923
|
144 |
+
36 09:03:27 0.0500 0.6059
|
145 |
+
37 09:03:27 0.0500 0.5825
|
146 |
+
38 09:03:27 0.0500 0.6452
|
147 |
+
39 09:03:27 0.0500 0.5882
|
148 |
+
40 09:03:28 0.0500 0.5870
|
149 |
+
41 09:03:28 0.0500 0.5335
|
150 |
+
42 09:03:28 0.0500 0.5565
|
151 |
+
43 09:03:28 0.0500 0.4992
|
152 |
+
44 09:03:28 0.0500 0.4920
|
153 |
+
45 09:03:29 0.0500 0.4566
|
154 |
+
46 09:03:29 0.0500 0.4690
|
155 |
+
47 09:03:29 0.0500 0.4889
|
156 |
+
48 09:03:29 0.0500 0.4679
|
157 |
+
49 09:03:29 0.0500 0.5131
|
158 |
+
50 09:03:29 0.0250 0.4307
|
159 |
+
51 09:03:30 0.0250 0.3945
|
160 |
+
52 09:03:30 0.0250 0.4253
|
161 |
+
53 09:03:30 0.0250 0.4031
|
162 |
+
54 09:03:30 0.0250 0.3890
|
163 |
+
55 09:03:30 0.0250 0.4077
|
164 |
+
56 09:03:30 0.0250 0.4014
|
165 |
+
57 09:03:31 0.0250 0.4047
|
166 |
+
58 09:03:31 0.0250 0.3886
|
167 |
+
59 09:03:31 0.0250 0.3857
|
168 |
+
60 09:03:31 0.0250 0.4047
|
169 |
+
61 09:03:31 0.0250 0.3794
|
170 |
+
62 09:03:32 0.0250 0.3563
|
171 |
+
63 09:03:32 0.0250 0.3768
|
172 |
+
64 09:03:32 0.0250 0.3743
|
173 |
+
65 09:03:32 0.0250 0.3922
|
174 |
+
66 09:03:32 0.0250 0.3583
|
175 |
+
67 09:03:32 0.0125 0.3449
|
176 |
+
68 09:03:33 0.0125 0.3365
|
177 |
+
69 09:03:33 0.0125 0.3437
|
178 |
+
70 09:03:33 0.0125 0.3303
|
179 |
+
71 09:03:33 0.0125 0.3206
|
180 |
+
72 09:03:33 0.0125 0.3163
|
181 |
+
73 09:03:33 0.0125 0.3315
|
182 |
+
74 09:03:34 0.0125 0.3327
|
183 |
+
75 09:03:34 0.0125 0.3305
|
184 |
+
76 09:03:34 0.0125 0.3227
|
185 |
+
77 09:03:34 0.0063 0.3109
|
186 |
+
78 09:03:34 0.0063 0.3286
|
187 |
+
79 09:03:34 0.0063 0.3028
|
188 |
+
80 09:03:35 0.0063 0.3036
|
189 |
+
81 09:03:35 0.0063 0.3172
|
190 |
+
82 09:03:35 0.0063 0.2768
|
191 |
+
83 09:03:35 0.0063 0.3365
|
192 |
+
84 09:03:35 0.0063 0.2943
|
193 |
+
85 09:03:35 0.0063 0.3257
|
194 |
+
86 09:03:36 0.0063 0.2903
|
195 |
+
87 09:03:36 0.0031 0.3197
|
196 |
+
88 09:03:36 0.0031 0.3203
|
197 |
+
89 09:03:36 0.0031 0.3001
|
198 |
+
90 09:03:36 0.0031 0.2860
|
199 |
+
91 09:03:37 0.0016 0.2941
|
200 |
+
92 09:03:37 0.0016 0.3025
|
201 |
+
93 09:03:37 0.0016 0.3037
|
202 |
+
94 09:03:37 0.0016 0.3201
|
203 |
+
95 09:03:38 0.0008 0.2712
|
204 |
+
96 09:03:38 0.0008 0.2926
|
205 |
+
97 09:03:38 0.0008 0.2803
|
206 |
+
98 09:03:38 0.0008 0.2878
|
207 |
+
99 09:03:39 0.0008 0.3217
|
208 |
+
100 09:03:39 0.0004 0.2933
|
209 |
+
101 09:03:39 0.0004 0.3120
|
210 |
+
102 09:03:39 0.0004 0.3372
|
211 |
+
103 09:03:39 0.0004 0.3188
|
212 |
+
104 09:03:39 0.0002 0.2841
|
213 |
+
105 09:03:40 0.0002 0.2938
|
214 |
+
106 09:03:40 0.0002 0.2898
|
215 |
+
EPOCH TIMESTAMP LEARNING_RATE TRAIN_LOSS
|
216 |
+
1 09:04:27 0.1000 3.5823
|
217 |
+
2 09:04:27 0.1000 2.7416
|
218 |
+
3 09:04:27 0.1000 2.4632
|
219 |
+
4 09:04:27 0.1000 2.5562
|
220 |
+
5 09:04:27 0.1000 2.5432
|
221 |
+
6 09:04:27 0.1000 2.4640
|
222 |
+
7 09:04:27 0.1000 2.1474
|
223 |
+
8 09:04:28 0.1000 2.2026
|
224 |
+
9 09:04:28 0.1000 2.1725
|
225 |
+
10 09:04:28 0.1000 2.0771
|
226 |
+
11 09:04:28 0.1000 1.7681
|
227 |
+
12 09:04:28 0.1000 1.7075
|
228 |
+
13 09:04:28 0.1000 1.5231
|
229 |
+
14 09:04:29 0.1000 1.6728
|
230 |
+
15 09:04:29 0.1000 1.5577
|
231 |
+
16 09:04:29 0.1000 1.5852
|
232 |
+
17 09:04:29 0.1000 1.3377
|
233 |
+
18 09:04:29 0.1000 1.3171
|
234 |
+
19 09:04:29 0.1000 1.2810
|
235 |
+
20 09:04:30 0.1000 1.1918
|
236 |
+
21 09:04:30 0.1000 1.1741
|
237 |
+
22 09:04:30 0.1000 1.0862
|
238 |
+
23 09:04:30 0.1000 0.9699
|
239 |
+
24 09:04:30 0.1000 0.9535
|
240 |
+
25 09:04:30 0.1000 0.9690
|
241 |
+
26 09:04:30 0.1000 0.8803
|
242 |
+
27 09:04:31 0.1000 0.8695
|
243 |
+
28 09:04:31 0.1000 0.8808
|
244 |
+
29 09:04:31 0.1000 0.9057
|
245 |
+
30 09:04:31 0.1000 0.8313
|
246 |
+
31 09:04:31 0.1000 0.7379
|
247 |
+
32 09:04:32 0.1000 0.7924
|
248 |
+
33 09:04:32 0.1000 0.7384
|
249 |
+
34 09:04:32 0.1000 0.6767
|
250 |
+
35 09:04:32 0.1000 0.7610
|
251 |
+
36 09:04:32 0.1000 0.6609
|
252 |
+
37 09:04:32 0.1000 0.5791
|
253 |
+
38 09:04:33 0.1000 0.6935
|
254 |
+
39 09:04:33 0.1000 0.7060
|
255 |
+
40 09:04:33 0.1000 0.6518
|
256 |
+
41 09:04:33 0.1000 0.6204
|
257 |
+
42 09:04:33 0.0500 0.4947
|
258 |
+
43 09:04:33 0.0500 0.4694
|
259 |
+
44 09:04:34 0.0500 0.4656
|
260 |
+
45 09:04:34 0.0500 0.5017
|
261 |
+
46 09:04:34 0.0500 0.4399
|
262 |
+
47 09:04:34 0.0500 0.4357
|
263 |
+
48 09:04:34 0.0500 0.4500
|
264 |
+
49 09:04:34 0.0500 0.4680
|
265 |
+
50 09:04:35 0.0500 0.4029
|
266 |
+
51 09:04:35 0.0500 0.3869
|
267 |
+
52 09:04:35 0.0500 0.3854
|
268 |
+
53 09:04:35 0.0500 0.3870
|
269 |
+
54 09:04:35 0.0500 0.3874
|
270 |
+
55 09:04:36 0.0500 0.3610
|
271 |
+
56 09:04:36 0.0500 0.3459
|
272 |
+
57 09:04:36 0.0500 0.3534
|
273 |
+
58 09:04:36 0.0500 0.3351
|
274 |
+
59 09:04:36 0.0500 0.4137
|
275 |
+
60 09:04:37 0.0500 0.3445
|
276 |
+
61 09:04:37 0.0500 0.3830
|
277 |
+
62 09:04:37 0.0500 0.3536
|
278 |
+
63 09:04:37 0.0250 0.3071
|
279 |
+
64 09:04:38 0.0250 0.2899
|
280 |
+
65 09:04:38 0.0250 0.3148
|
281 |
+
66 09:04:38 0.0250 0.2968
|
282 |
+
67 09:04:38 0.0250 0.3097
|
283 |
+
68 09:04:38 0.0250 0.2919
|
284 |
+
69 09:04:39 0.0125 0.2826
|
285 |
+
70 09:04:39 0.0125 0.2876
|
286 |
+
71 09:04:39 0.0125 0.2956
|
287 |
+
72 09:04:39 0.0125 0.2692
|
288 |
+
73 09:04:39 0.0125 0.2963
|
289 |
+
74 09:04:39 0.0125 0.2954
|
290 |
+
75 09:04:40 0.0125 0.2645
|
291 |
+
76 09:04:40 0.0125 0.2735
|
292 |
+
77 09:04:40 0.0125 0.2813
|
293 |
+
78 09:04:40 0.0125 0.2721
|
294 |
+
79 09:04:40 0.0125 0.2691
|
295 |
+
80 09:04:40 0.0063 0.2890
|
296 |
+
81 09:04:41 0.0063 0.2769
|
297 |
+
82 09:04:41 0.0063 0.2469
|
298 |
+
83 09:04:41 0.0063 0.2512
|
299 |
+
84 09:04:41 0.0063 0.2781
|
300 |
+
85 09:04:41 0.0063 0.2415
|
301 |
+
86 09:04:42 0.0063 0.2485
|
302 |
+
87 09:04:42 0.0063 0.2468
|
303 |
+
88 09:04:42 0.0063 0.2662
|
304 |
+
89 09:04:42 0.0063 0.2425
|
305 |
+
90 09:04:42 0.0031 0.2670
|
306 |
+
91 09:04:42 0.0031 0.2670
|
307 |
+
92 09:04:43 0.0031 0.2656
|
308 |
+
93 09:04:43 0.0031 0.2355
|
309 |
+
94 09:04:43 0.0031 0.2808
|
310 |
+
95 09:04:43 0.0031 0.2473
|
311 |
+
96 09:04:43 0.0031 0.2557
|
312 |
+
97 09:04:43 0.0031 0.2413
|
313 |
+
98 09:04:44 0.0016 0.2254
|
314 |
+
99 09:04:44 0.0016 0.2318
|
315 |
+
100 09:04:44 0.0016 0.2535
|
316 |
+
101 09:04:44 0.0016 0.2298
|
317 |
+
102 09:04:44 0.0016 0.2690
|
318 |
+
103 09:04:45 0.0008 0.2617
|
319 |
+
104 09:04:45 0.0008 0.2251
|
320 |
+
105 09:04:45 0.0008 0.2269
|
321 |
+
106 09:04:45 0.0008 0.2313
|
322 |
+
107 09:04:45 0.0008 0.2647
|
323 |
+
108 09:04:45 0.0008 0.2673
|
324 |
+
109 09:04:46 0.0004 0.2502
|
325 |
+
110 09:04:46 0.0004 0.2454
|
326 |
+
111 09:04:46 0.0004 0.2416
|
327 |
+
112 09:04:46 0.0004 0.2459
|
328 |
+
113 09:04:46 0.0002 0.2519
|
329 |
+
114 09:04:46 0.0002 0.2322
|
330 |
+
115 09:04:47 0.0002 0.2535
|
331 |
+
EPOCH TIMESTAMP LEARNING_RATE TRAIN_LOSS
|
332 |
+
1 09:08:21 0.1000 3.1448
|
333 |
+
2 09:08:21 0.1000 2.3992
|
334 |
+
3 09:08:21 0.1000 2.2576
|
335 |
+
4 09:08:22 0.1000 2.1437
|
336 |
+
5 09:08:22 0.1000 2.1321
|
337 |
+
6 09:08:22 0.1000 1.9632
|
338 |
+
7 09:08:22 0.1000 2.0062
|
339 |
+
8 09:08:22 0.1000 1.9332
|
340 |
+
9 09:08:23 0.1000 1.6279
|
341 |
+
10 09:08:23 0.1000 1.5279
|
342 |
+
11 09:08:23 0.1000 1.3545
|
343 |
+
12 09:08:23 0.1000 1.4941
|
344 |
+
13 09:08:23 0.1000 1.4278
|
345 |
+
14 09:08:24 0.1000 1.2451
|
346 |
+
15 09:08:24 0.1000 1.1863
|
347 |
+
16 09:08:24 0.1000 1.0880
|
348 |
+
17 09:08:24 0.1000 1.1990
|
349 |
+
18 09:08:24 0.1000 1.1368
|
350 |
+
19 09:08:24 0.1000 1.0742
|
351 |
+
20 09:08:25 0.1000 0.9518
|
352 |
+
21 09:08:25 0.1000 0.8988
|
353 |
+
22 09:08:25 0.1000 0.8504
|
354 |
+
23 09:08:25 0.1000 0.8083
|
355 |
+
24 09:08:25 0.1000 0.7358
|
356 |
+
25 09:08:25 0.1000 0.7215
|
357 |
+
26 09:08:26 0.1000 0.7841
|
358 |
+
27 09:08:26 0.1000 0.7422
|
359 |
+
28 09:08:26 0.1000 0.6948
|
360 |
+
29 09:08:26 0.1000 0.7219
|
361 |
+
30 09:08:26 0.1000 0.6684
|
362 |
+
31 09:08:26 0.1000 0.6644
|
363 |
+
32 09:08:27 0.1000 0.6743
|
364 |
+
33 09:08:27 0.1000 0.5601
|
365 |
+
34 09:08:27 0.1000 0.6282
|
366 |
+
35 09:08:27 0.1000 0.5546
|
367 |
+
36 09:08:28 0.1000 0.5151
|
368 |
+
37 09:08:28 0.1000 0.4811
|
369 |
+
38 09:08:28 0.1000 0.6027
|
370 |
+
39 09:08:28 0.1000 0.4841
|
371 |
+
40 09:08:28 0.1000 0.4402
|
372 |
+
41 09:08:29 0.1000 0.4675
|
373 |
+
42 09:08:29 0.1000 0.4521
|
374 |
+
43 09:08:29 0.1000 0.5020
|
375 |
+
44 09:08:29 0.1000 0.4322
|
376 |
+
45 09:08:29 0.1000 0.4532
|
377 |
+
46 09:08:30 0.1000 0.4376
|
378 |
+
47 09:08:30 0.1000 0.4619
|
379 |
+
48 09:08:30 0.1000 0.4356
|
380 |
+
49 09:08:30 0.0500 0.3690
|
381 |
+
50 09:08:30 0.0500 0.3549
|
382 |
+
51 09:08:30 0.0500 0.3175
|
383 |
+
52 09:08:31 0.0500 0.3020
|
384 |
+
53 09:08:31 0.0500 0.3261
|
385 |
+
54 09:08:31 0.0500 0.2971
|
386 |
+
55 09:08:31 0.0500 0.2711
|
387 |
+
56 09:08:31 0.0500 0.2311
|
388 |
+
57 09:08:31 0.0500 0.2510
|
389 |
+
58 09:08:32 0.0500 0.2833
|
390 |
+
59 09:08:32 0.0500 0.2467
|
391 |
+
60 09:08:32 0.0500 0.3014
|
392 |
+
61 09:08:32 0.0250 0.2471
|
393 |
+
62 09:08:32 0.0250 0.2270
|
394 |
+
63 09:08:32 0.0250 0.2255
|
395 |
+
64 09:08:33 0.0250 0.2162
|
396 |
+
65 09:08:33 0.0250 0.2357
|
397 |
+
66 09:08:33 0.0250 0.2306
|
398 |
+
67 09:08:33 0.0250 0.2351
|
399 |
+
68 09:08:33 0.0250 0.2446
|
400 |
+
69 09:08:33 0.0125 0.2112
|
401 |
+
70 09:08:34 0.0125 0.2534
|
402 |
+
71 09:08:34 0.0125 0.2213
|
403 |
+
72 09:08:34 0.0125 0.2043
|
404 |
+
73 09:08:34 0.0125 0.2195
|
405 |
+
74 09:08:34 0.0125 0.2241
|
406 |
+
75 09:08:34 0.0125 0.2092
|
407 |
+
76 09:08:35 0.0125 0.2267
|
408 |
+
77 09:08:35 0.0063 0.2296
|
409 |
+
78 09:08:35 0.0063 0.2382
|
410 |
+
79 09:08:35 0.0063 0.2136
|
411 |
+
80 09:08:35 0.0063 0.2083
|
412 |
+
81 09:08:35 0.0031 0.2067
|
413 |
+
82 09:08:36 0.0031 0.2045
|
414 |
+
83 09:08:36 0.0031 0.1940
|
415 |
+
84 09:08:36 0.0031 0.2062
|
416 |
+
85 09:08:36 0.0031 0.2041
|
417 |
+
86 09:08:36 0.0031 0.2278
|
418 |
+
87 09:08:36 0.0031 0.1945
|
419 |
+
88 09:08:37 0.0016 0.2001
|
420 |
+
89 09:08:37 0.0016 0.1861
|
421 |
+
90 09:08:37 0.0016 0.1844
|
422 |
+
91 09:08:37 0.0016 0.2162
|
423 |
+
92 09:08:37 0.0016 0.1962
|
424 |
+
93 09:08:37 0.0016 0.1969
|
425 |
+
94 09:08:38 0.0016 0.1967
|
426 |
+
95 09:08:38 0.0008 0.1958
|
427 |
+
96 09:08:38 0.0008 0.1861
|
428 |
+
97 09:08:38 0.0008 0.1790
|
429 |
+
98 09:08:38 0.0008 0.1840
|
430 |
+
99 09:08:39 0.0008 0.2009
|
431 |
+
100 09:08:39 0.0008 0.1867
|
432 |
+
101 09:08:39 0.0008 0.2111
|
433 |
+
102 09:08:39 0.0004 0.1797
|
434 |
+
103 09:08:39 0.0004 0.2326
|
435 |
+
104 09:08:40 0.0004 0.2138
|
436 |
+
105 09:08:40 0.0004 0.2119
|
437 |
+
106 09:08:40 0.0002 0.1712
|
438 |
+
107 09:08:40 0.0002 0.1791
|
439 |
+
108 09:08:41 0.0002 0.1762
|
440 |
+
109 09:08:41 0.0002 0.2116
|
test.tsv
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
JAHSMS O O
|
2 |
+
ROACXET B-ORG O
|
3 |
+
INTHA B-NAME B-NAME
|
4 |
+
SMITH I-NAME I-NAME
|
5 |
+
545W75AV O O
|
6 |
+
GC3124 B-GCNUMBER B-GCNUMBER
|
7 |
+
MIAM B-LOCATION B-LOCATION
|
8 |
+
FL33155 I-LOCATION I-LOCATION
|
9 |
+
WESIDWNINALS O O
|
10 |
+
GC112 B-GCNUMBER B-GCNUMBER
|
11 |
+
LINTHASTH B-NAME B-NAME
|
12 |
+
GROUND O O
|
13 |
+
|
14 |
+
Jullen B-NAME B-NAME
|
15 |
+
Cohen I-NAME I-NAME
|
16 |
+
GC11909 B-GCNUMBER B-GCNUMBER
|
17 |
+
4654SW75THAVE O O
|
18 |
+
33155FL B-LOCATION B-LOCATION
|
19 |
+
MiAM I-LOCATION I-LOCATION
|
20 |
+
UnedStates B-COUNTRY B-COUNTRY
|
21 |
+
1DMI6 B-ORG B-ORG
|
22 |
+
CYCLE O O
|
23 |
+
|
training.log
ADDED
@@ -0,0 +1,851 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2024-03-28 09:08:20,895 ----------------------------------------------------------------------------------------------------
|
2 |
+
2024-03-28 09:08:20,897 Model: "SequenceTagger(
|
3 |
+
(embeddings): StackedEmbeddings(
|
4 |
+
(list_embedding_0): WordEmbeddings(
|
5 |
+
'glove'
|
6 |
+
(embedding): Embedding(400001, 100)
|
7 |
+
)
|
8 |
+
(list_embedding_1): FlairEmbeddings(
|
9 |
+
(lm): LanguageModel(
|
10 |
+
(drop): Dropout(p=0.05, inplace=False)
|
11 |
+
(encoder): Embedding(300, 100)
|
12 |
+
(rnn): LSTM(100, 2048)
|
13 |
+
)
|
14 |
+
)
|
15 |
+
(list_embedding_2): FlairEmbeddings(
|
16 |
+
(lm): LanguageModel(
|
17 |
+
(drop): Dropout(p=0.05, inplace=False)
|
18 |
+
(encoder): Embedding(300, 100)
|
19 |
+
(rnn): LSTM(100, 2048)
|
20 |
+
)
|
21 |
+
)
|
22 |
+
)
|
23 |
+
(word_dropout): WordDropout(p=0.05)
|
24 |
+
(locked_dropout): LockedDropout(p=0.5)
|
25 |
+
(embedding2nn): Linear(in_features=4196, out_features=4196, bias=True)
|
26 |
+
(rnn): LSTM(4196, 256, batch_first=True, bidirectional=True)
|
27 |
+
(linear): Linear(in_features=512, out_features=27, bias=True)
|
28 |
+
(loss_function): ViterbiLoss()
|
29 |
+
(crf): CRF()
|
30 |
+
)"
|
31 |
+
2024-03-28 09:08:20,899 ----------------------------------------------------------------------------------------------------
|
32 |
+
2024-03-28 09:08:20,901 Corpus: 50 train + 16 dev + 2 test sentences
|
33 |
+
2024-03-28 09:08:20,903 ----------------------------------------------------------------------------------------------------
|
34 |
+
2024-03-28 09:08:20,905 Train: 66 sentences
|
35 |
+
2024-03-28 09:08:20,906 (train_with_dev=True, train_with_test=False)
|
36 |
+
2024-03-28 09:08:20,908 ----------------------------------------------------------------------------------------------------
|
37 |
+
2024-03-28 09:08:20,909 Training Params:
|
38 |
+
2024-03-28 09:08:20,910 - learning_rate: "0.1"
|
39 |
+
2024-03-28 09:08:20,912 - mini_batch_size: "32"
|
40 |
+
2024-03-28 09:08:20,913 - max_epochs: "150"
|
41 |
+
2024-03-28 09:08:20,914 - shuffle: "True"
|
42 |
+
2024-03-28 09:08:20,915 ----------------------------------------------------------------------------------------------------
|
43 |
+
2024-03-28 09:08:20,917 Plugins:
|
44 |
+
2024-03-28 09:08:20,918 - AnnealOnPlateau | patience: '3', anneal_factor: '0.5', min_learning_rate: '0.0001'
|
45 |
+
2024-03-28 09:08:20,919 ----------------------------------------------------------------------------------------------------
|
46 |
+
2024-03-28 09:08:20,920 Final evaluation on model from best epoch (best-model.pt)
|
47 |
+
2024-03-28 09:08:20,921 - metric: "('micro avg', 'f1-score')"
|
48 |
+
2024-03-28 09:08:20,923 ----------------------------------------------------------------------------------------------------
|
49 |
+
2024-03-28 09:08:20,924 Computation:
|
50 |
+
2024-03-28 09:08:20,925 - compute on device: cuda:0
|
51 |
+
2024-03-28 09:08:20,927 - embedding storage: cpu
|
52 |
+
2024-03-28 09:08:20,928 ----------------------------------------------------------------------------------------------------
|
53 |
+
2024-03-28 09:08:20,929 Model training base path: "resources/taggers/ner-english"
|
54 |
+
2024-03-28 09:08:20,930 ----------------------------------------------------------------------------------------------------
|
55 |
+
2024-03-28 09:08:20,931 ----------------------------------------------------------------------------------------------------
|
56 |
+
2024-03-28 09:08:21,191 epoch 1 - iter 1/3 - loss 3.36974860 - time (sec): 0.26 - samples/sec: 1392.44 - lr: 0.100000 - momentum: 0.000000
|
57 |
+
2024-03-28 09:08:21,396 epoch 1 - iter 2/3 - loss 3.15954622 - time (sec): 0.46 - samples/sec: 1629.06 - lr: 0.100000 - momentum: 0.000000
|
58 |
+
2024-03-28 09:08:21,493 epoch 1 - iter 3/3 - loss 3.14478873 - time (sec): 0.56 - samples/sec: 1391.02 - lr: 0.100000 - momentum: 0.000000
|
59 |
+
2024-03-28 09:08:21,495 ----------------------------------------------------------------------------------------------------
|
60 |
+
2024-03-28 09:08:21,498 EPOCH 1 done: loss 3.1448 - lr: 0.100000
|
61 |
+
2024-03-28 09:08:21,500 - 0 epochs without improvement
|
62 |
+
2024-03-28 09:08:21,502 ----------------------------------------------------------------------------------------------------
|
63 |
+
2024-03-28 09:08:21,589 epoch 2 - iter 1/3 - loss 2.45131045 - time (sec): 0.08 - samples/sec: 4558.10 - lr: 0.100000 - momentum: 0.000000
|
64 |
+
2024-03-28 09:08:21,668 epoch 2 - iter 2/3 - loss 2.39363852 - time (sec): 0.16 - samples/sec: 4622.19 - lr: 0.100000 - momentum: 0.000000
|
65 |
+
2024-03-28 09:08:21,696 epoch 2 - iter 3/3 - loss 2.39924183 - time (sec): 0.19 - samples/sec: 4072.04 - lr: 0.100000 - momentum: 0.000000
|
66 |
+
2024-03-28 09:08:21,698 ----------------------------------------------------------------------------------------------------
|
67 |
+
2024-03-28 09:08:21,700 EPOCH 2 done: loss 2.3992 - lr: 0.100000
|
68 |
+
2024-03-28 09:08:21,705 - 0 epochs without improvement
|
69 |
+
2024-03-28 09:08:21,709 ----------------------------------------------------------------------------------------------------
|
70 |
+
2024-03-28 09:08:21,802 epoch 3 - iter 1/3 - loss 2.23206190 - time (sec): 0.09 - samples/sec: 4145.47 - lr: 0.100000 - momentum: 0.000000
|
71 |
+
2024-03-28 09:08:21,881 epoch 3 - iter 2/3 - loss 2.25305821 - time (sec): 0.17 - samples/sec: 4484.56 - lr: 0.100000 - momentum: 0.000000
|
72 |
+
2024-03-28 09:08:21,905 epoch 3 - iter 3/3 - loss 2.25758761 - time (sec): 0.19 - samples/sec: 4035.32 - lr: 0.100000 - momentum: 0.000000
|
73 |
+
2024-03-28 09:08:21,907 ----------------------------------------------------------------------------------------------------
|
74 |
+
2024-03-28 09:08:21,908 EPOCH 3 done: loss 2.2576 - lr: 0.100000
|
75 |
+
2024-03-28 09:08:21,910 - 0 epochs without improvement
|
76 |
+
2024-03-28 09:08:21,912 ----------------------------------------------------------------------------------------------------
|
77 |
+
2024-03-28 09:08:21,996 epoch 4 - iter 1/3 - loss 1.98101494 - time (sec): 0.08 - samples/sec: 4904.79 - lr: 0.100000 - momentum: 0.000000
|
78 |
+
2024-03-28 09:08:22,068 epoch 4 - iter 2/3 - loss 2.13153052 - time (sec): 0.15 - samples/sec: 4963.13 - lr: 0.100000 - momentum: 0.000000
|
79 |
+
2024-03-28 09:08:22,095 epoch 4 - iter 3/3 - loss 2.14371007 - time (sec): 0.18 - samples/sec: 4357.04 - lr: 0.100000 - momentum: 0.000000
|
80 |
+
2024-03-28 09:08:22,097 ----------------------------------------------------------------------------------------------------
|
81 |
+
2024-03-28 09:08:22,099 EPOCH 4 done: loss 2.1437 - lr: 0.100000
|
82 |
+
2024-03-28 09:08:22,101 - 0 epochs without improvement
|
83 |
+
2024-03-28 09:08:22,102 ----------------------------------------------------------------------------------------------------
|
84 |
+
2024-03-28 09:08:22,186 epoch 5 - iter 1/3 - loss 1.97350561 - time (sec): 0.08 - samples/sec: 5013.65 - lr: 0.100000 - momentum: 0.000000
|
85 |
+
2024-03-28 09:08:22,263 epoch 5 - iter 2/3 - loss 2.14281019 - time (sec): 0.16 - samples/sec: 4793.23 - lr: 0.100000 - momentum: 0.000000
|
86 |
+
2024-03-28 09:08:22,292 epoch 5 - iter 3/3 - loss 2.13209609 - time (sec): 0.19 - samples/sec: 4168.19 - lr: 0.100000 - momentum: 0.000000
|
87 |
+
2024-03-28 09:08:22,294 ----------------------------------------------------------------------------------------------------
|
88 |
+
2024-03-28 09:08:22,297 EPOCH 5 done: loss 2.1321 - lr: 0.100000
|
89 |
+
2024-03-28 09:08:22,301 - 0 epochs without improvement
|
90 |
+
2024-03-28 09:08:22,303 ----------------------------------------------------------------------------------------------------
|
91 |
+
2024-03-28 09:08:22,380 epoch 6 - iter 1/3 - loss 1.95909884 - time (sec): 0.07 - samples/sec: 4953.78 - lr: 0.100000 - momentum: 0.000000
|
92 |
+
2024-03-28 09:08:22,472 epoch 6 - iter 2/3 - loss 1.98597567 - time (sec): 0.17 - samples/sec: 4577.26 - lr: 0.100000 - momentum: 0.000000
|
93 |
+
2024-03-28 09:08:22,492 epoch 6 - iter 3/3 - loss 1.96322728 - time (sec): 0.19 - samples/sec: 4170.18 - lr: 0.100000 - momentum: 0.000000
|
94 |
+
2024-03-28 09:08:22,494 ----------------------------------------------------------------------------------------------------
|
95 |
+
2024-03-28 09:08:22,496 EPOCH 6 done: loss 1.9632 - lr: 0.100000
|
96 |
+
2024-03-28 09:08:22,499 - 0 epochs without improvement
|
97 |
+
2024-03-28 09:08:22,501 ----------------------------------------------------------------------------------------------------
|
98 |
+
2024-03-28 09:08:22,576 epoch 7 - iter 1/3 - loss 2.11116446 - time (sec): 0.07 - samples/sec: 4956.72 - lr: 0.100000 - momentum: 0.000000
|
99 |
+
2024-03-28 09:08:22,651 epoch 7 - iter 2/3 - loss 2.01348722 - time (sec): 0.15 - samples/sec: 5058.67 - lr: 0.100000 - momentum: 0.000000
|
100 |
+
2024-03-28 09:08:22,678 epoch 7 - iter 3/3 - loss 2.00619598 - time (sec): 0.17 - samples/sec: 4461.42 - lr: 0.100000 - momentum: 0.000000
|
101 |
+
2024-03-28 09:08:22,680 ----------------------------------------------------------------------------------------------------
|
102 |
+
2024-03-28 09:08:22,683 EPOCH 7 done: loss 2.0062 - lr: 0.100000
|
103 |
+
2024-03-28 09:08:22,685 - 1 epochs without improvement
|
104 |
+
2024-03-28 09:08:22,687 ----------------------------------------------------------------------------------------------------
|
105 |
+
2024-03-28 09:08:22,762 epoch 8 - iter 1/3 - loss 1.82821058 - time (sec): 0.07 - samples/sec: 5176.83 - lr: 0.100000 - momentum: 0.000000
|
106 |
+
2024-03-28 09:08:22,837 epoch 8 - iter 2/3 - loss 1.92655447 - time (sec): 0.15 - samples/sec: 5095.66 - lr: 0.100000 - momentum: 0.000000
|
107 |
+
2024-03-28 09:08:22,865 epoch 8 - iter 3/3 - loss 1.93318620 - time (sec): 0.18 - samples/sec: 4426.23 - lr: 0.100000 - momentum: 0.000000
|
108 |
+
2024-03-28 09:08:22,867 ----------------------------------------------------------------------------------------------------
|
109 |
+
2024-03-28 09:08:22,869 EPOCH 8 done: loss 1.9332 - lr: 0.100000
|
110 |
+
2024-03-28 09:08:22,873 - 0 epochs without improvement
|
111 |
+
2024-03-28 09:08:22,876 ----------------------------------------------------------------------------------------------------
|
112 |
+
2024-03-28 09:08:22,966 epoch 9 - iter 1/3 - loss 1.64564751 - time (sec): 0.09 - samples/sec: 4254.01 - lr: 0.100000 - momentum: 0.000000
|
113 |
+
2024-03-28 09:08:23,056 epoch 9 - iter 2/3 - loss 1.63239704 - time (sec): 0.18 - samples/sec: 4272.42 - lr: 0.100000 - momentum: 0.000000
|
114 |
+
2024-03-28 09:08:23,086 epoch 9 - iter 3/3 - loss 1.62794558 - time (sec): 0.21 - samples/sec: 3783.46 - lr: 0.100000 - momentum: 0.000000
|
115 |
+
2024-03-28 09:08:23,088 ----------------------------------------------------------------------------------------------------
|
116 |
+
2024-03-28 09:08:23,090 EPOCH 9 done: loss 1.6279 - lr: 0.100000
|
117 |
+
2024-03-28 09:08:23,092 - 0 epochs without improvement
|
118 |
+
2024-03-28 09:08:23,094 ----------------------------------------------------------------------------------------------------
|
119 |
+
2024-03-28 09:08:23,176 epoch 10 - iter 1/3 - loss 1.51423518 - time (sec): 0.08 - samples/sec: 4972.85 - lr: 0.100000 - momentum: 0.000000
|
120 |
+
2024-03-28 09:08:23,263 epoch 10 - iter 2/3 - loss 1.53373787 - time (sec): 0.16 - samples/sec: 4590.31 - lr: 0.100000 - momentum: 0.000000
|
121 |
+
2024-03-28 09:08:23,297 epoch 10 - iter 3/3 - loss 1.52787663 - time (sec): 0.20 - samples/sec: 3938.30 - lr: 0.100000 - momentum: 0.000000
|
122 |
+
2024-03-28 09:08:23,301 ----------------------------------------------------------------------------------------------------
|
123 |
+
2024-03-28 09:08:23,303 EPOCH 10 done: loss 1.5279 - lr: 0.100000
|
124 |
+
2024-03-28 09:08:23,306 - 0 epochs without improvement
|
125 |
+
2024-03-28 09:08:23,308 ----------------------------------------------------------------------------------------------------
|
126 |
+
2024-03-28 09:08:23,394 epoch 11 - iter 1/3 - loss 1.42197424 - time (sec): 0.08 - samples/sec: 4545.88 - lr: 0.100000 - momentum: 0.000000
|
127 |
+
2024-03-28 09:08:23,481 epoch 11 - iter 2/3 - loss 1.35518180 - time (sec): 0.17 - samples/sec: 4371.34 - lr: 0.100000 - momentum: 0.000000
|
128 |
+
2024-03-28 09:08:23,515 epoch 11 - iter 3/3 - loss 1.35447597 - time (sec): 0.21 - samples/sec: 3785.22 - lr: 0.100000 - momentum: 0.000000
|
129 |
+
2024-03-28 09:08:23,517 ----------------------------------------------------------------------------------------------------
|
130 |
+
2024-03-28 09:08:23,520 EPOCH 11 done: loss 1.3545 - lr: 0.100000
|
131 |
+
2024-03-28 09:08:23,523 - 0 epochs without improvement
|
132 |
+
2024-03-28 09:08:23,524 ----------------------------------------------------------------------------------------------------
|
133 |
+
2024-03-28 09:08:23,626 epoch 12 - iter 1/3 - loss 1.40993639 - time (sec): 0.10 - samples/sec: 3734.89 - lr: 0.100000 - momentum: 0.000000
|
134 |
+
2024-03-28 09:08:23,722 epoch 12 - iter 2/3 - loss 1.49738996 - time (sec): 0.20 - samples/sec: 3849.63 - lr: 0.100000 - momentum: 0.000000
|
135 |
+
2024-03-28 09:08:23,759 epoch 12 - iter 3/3 - loss 1.49414163 - time (sec): 0.23 - samples/sec: 3342.20 - lr: 0.100000 - momentum: 0.000000
|
136 |
+
2024-03-28 09:08:23,762 ----------------------------------------------------------------------------------------------------
|
137 |
+
2024-03-28 09:08:23,763 EPOCH 12 done: loss 1.4941 - lr: 0.100000
|
138 |
+
2024-03-28 09:08:23,765 - 1 epochs without improvement
|
139 |
+
2024-03-28 09:08:23,767 ----------------------------------------------------------------------------------------------------
|
140 |
+
2024-03-28 09:08:23,841 epoch 13 - iter 1/3 - loss 1.26951506 - time (sec): 0.07 - samples/sec: 5241.77 - lr: 0.100000 - momentum: 0.000000
|
141 |
+
2024-03-28 09:08:23,902 epoch 13 - iter 2/3 - loss 1.44954909 - time (sec): 0.13 - samples/sec: 5637.53 - lr: 0.100000 - momentum: 0.000000
|
142 |
+
2024-03-28 09:08:23,928 epoch 13 - iter 3/3 - loss 1.42776139 - time (sec): 0.16 - samples/sec: 4888.19 - lr: 0.100000 - momentum: 0.000000
|
143 |
+
2024-03-28 09:08:23,930 ----------------------------------------------------------------------------------------------------
|
144 |
+
2024-03-28 09:08:23,933 EPOCH 13 done: loss 1.4278 - lr: 0.100000
|
145 |
+
2024-03-28 09:08:23,935 - 2 epochs without improvement
|
146 |
+
2024-03-28 09:08:23,938 ----------------------------------------------------------------------------------------------------
|
147 |
+
2024-03-28 09:08:24,001 epoch 14 - iter 1/3 - loss 1.25857317 - time (sec): 0.06 - samples/sec: 6187.07 - lr: 0.100000 - momentum: 0.000000
|
148 |
+
2024-03-28 09:08:24,065 epoch 14 - iter 2/3 - loss 1.24984402 - time (sec): 0.13 - samples/sec: 6026.61 - lr: 0.100000 - momentum: 0.000000
|
149 |
+
2024-03-28 09:08:24,087 epoch 14 - iter 3/3 - loss 1.24510320 - time (sec): 0.15 - samples/sec: 5292.42 - lr: 0.100000 - momentum: 0.000000
|
150 |
+
2024-03-28 09:08:24,089 ----------------------------------------------------------------------------------------------------
|
151 |
+
2024-03-28 09:08:24,091 EPOCH 14 done: loss 1.2451 - lr: 0.100000
|
152 |
+
2024-03-28 09:08:24,093 - 0 epochs without improvement
|
153 |
+
2024-03-28 09:08:24,096 ----------------------------------------------------------------------------------------------------
|
154 |
+
2024-03-28 09:08:24,152 epoch 15 - iter 1/3 - loss 1.13958904 - time (sec): 0.05 - samples/sec: 6868.95 - lr: 0.100000 - momentum: 0.000000
|
155 |
+
2024-03-28 09:08:24,217 epoch 15 - iter 2/3 - loss 1.18272163 - time (sec): 0.12 - samples/sec: 6314.93 - lr: 0.100000 - momentum: 0.000000
|
156 |
+
2024-03-28 09:08:24,241 epoch 15 - iter 3/3 - loss 1.18627405 - time (sec): 0.14 - samples/sec: 5430.97 - lr: 0.100000 - momentum: 0.000000
|
157 |
+
2024-03-28 09:08:24,243 ----------------------------------------------------------------------------------------------------
|
158 |
+
2024-03-28 09:08:24,246 EPOCH 15 done: loss 1.1863 - lr: 0.100000
|
159 |
+
2024-03-28 09:08:24,251 - 0 epochs without improvement
|
160 |
+
2024-03-28 09:08:24,252 ----------------------------------------------------------------------------------------------------
|
161 |
+
2024-03-28 09:08:24,320 epoch 16 - iter 1/3 - loss 1.08566695 - time (sec): 0.06 - samples/sec: 6081.82 - lr: 0.100000 - momentum: 0.000000
|
162 |
+
2024-03-28 09:08:24,380 epoch 16 - iter 2/3 - loss 1.07927891 - time (sec): 0.12 - samples/sec: 6157.72 - lr: 0.100000 - momentum: 0.000000
|
163 |
+
2024-03-28 09:08:24,404 epoch 16 - iter 3/3 - loss 1.08804569 - time (sec): 0.15 - samples/sec: 5318.34 - lr: 0.100000 - momentum: 0.000000
|
164 |
+
2024-03-28 09:08:24,405 ----------------------------------------------------------------------------------------------------
|
165 |
+
2024-03-28 09:08:24,408 EPOCH 16 done: loss 1.0880 - lr: 0.100000
|
166 |
+
2024-03-28 09:08:24,411 - 0 epochs without improvement
|
167 |
+
2024-03-28 09:08:24,414 ----------------------------------------------------------------------------------------------------
|
168 |
+
2024-03-28 09:08:24,478 epoch 17 - iter 1/3 - loss 0.98281485 - time (sec): 0.06 - samples/sec: 6049.56 - lr: 0.100000 - momentum: 0.000000
|
169 |
+
2024-03-28 09:08:24,553 epoch 17 - iter 2/3 - loss 1.19747295 - time (sec): 0.14 - samples/sec: 5529.82 - lr: 0.100000 - momentum: 0.000000
|
170 |
+
2024-03-28 09:08:24,575 epoch 17 - iter 3/3 - loss 1.19897193 - time (sec): 0.16 - samples/sec: 4906.66 - lr: 0.100000 - momentum: 0.000000
|
171 |
+
2024-03-28 09:08:24,577 ----------------------------------------------------------------------------------------------------
|
172 |
+
2024-03-28 09:08:24,580 EPOCH 17 done: loss 1.1990 - lr: 0.100000
|
173 |
+
2024-03-28 09:08:24,583 - 1 epochs without improvement
|
174 |
+
2024-03-28 09:08:24,585 ----------------------------------------------------------------------------------------------------
|
175 |
+
2024-03-28 09:08:24,659 epoch 18 - iter 1/3 - loss 1.06397110 - time (sec): 0.07 - samples/sec: 5470.45 - lr: 0.100000 - momentum: 0.000000
|
176 |
+
2024-03-28 09:08:24,720 epoch 18 - iter 2/3 - loss 1.12673372 - time (sec): 0.13 - samples/sec: 5735.98 - lr: 0.100000 - momentum: 0.000000
|
177 |
+
2024-03-28 09:08:24,742 epoch 18 - iter 3/3 - loss 1.13683503 - time (sec): 0.16 - samples/sec: 5019.50 - lr: 0.100000 - momentum: 0.000000
|
178 |
+
2024-03-28 09:08:24,744 ----------------------------------------------------------------------------------------------------
|
179 |
+
2024-03-28 09:08:24,747 EPOCH 18 done: loss 1.1368 - lr: 0.100000
|
180 |
+
2024-03-28 09:08:24,750 - 2 epochs without improvement
|
181 |
+
2024-03-28 09:08:24,752 ----------------------------------------------------------------------------------------------------
|
182 |
+
2024-03-28 09:08:24,815 epoch 19 - iter 1/3 - loss 1.13094212 - time (sec): 0.06 - samples/sec: 6425.44 - lr: 0.100000 - momentum: 0.000000
|
183 |
+
2024-03-28 09:08:24,880 epoch 19 - iter 2/3 - loss 1.06757936 - time (sec): 0.12 - samples/sec: 6053.73 - lr: 0.100000 - momentum: 0.000000
|
184 |
+
2024-03-28 09:08:24,901 epoch 19 - iter 3/3 - loss 1.07417968 - time (sec): 0.15 - samples/sec: 5333.04 - lr: 0.100000 - momentum: 0.000000
|
185 |
+
2024-03-28 09:08:24,902 ----------------------------------------------------------------------------------------------------
|
186 |
+
2024-03-28 09:08:24,905 EPOCH 19 done: loss 1.0742 - lr: 0.100000
|
187 |
+
2024-03-28 09:08:24,907 - 0 epochs without improvement
|
188 |
+
2024-03-28 09:08:24,910 ----------------------------------------------------------------------------------------------------
|
189 |
+
2024-03-28 09:08:24,974 epoch 20 - iter 1/3 - loss 0.98265959 - time (sec): 0.06 - samples/sec: 6130.25 - lr: 0.100000 - momentum: 0.000000
|
190 |
+
2024-03-28 09:08:25,035 epoch 20 - iter 2/3 - loss 0.95606777 - time (sec): 0.12 - samples/sec: 6115.30 - lr: 0.100000 - momentum: 0.000000
|
191 |
+
2024-03-28 09:08:25,059 epoch 20 - iter 3/3 - loss 0.95184126 - time (sec): 0.15 - samples/sec: 5278.72 - lr: 0.100000 - momentum: 0.000000
|
192 |
+
2024-03-28 09:08:25,061 ----------------------------------------------------------------------------------------------------
|
193 |
+
2024-03-28 09:08:25,066 EPOCH 20 done: loss 0.9518 - lr: 0.100000
|
194 |
+
2024-03-28 09:08:25,068 - 0 epochs without improvement
|
195 |
+
2024-03-28 09:08:25,071 ----------------------------------------------------------------------------------------------------
|
196 |
+
2024-03-28 09:08:25,133 epoch 21 - iter 1/3 - loss 0.86139335 - time (sec): 0.06 - samples/sec: 6546.08 - lr: 0.100000 - momentum: 0.000000
|
197 |
+
2024-03-28 09:08:25,194 epoch 21 - iter 2/3 - loss 0.88997541 - time (sec): 0.12 - samples/sec: 6239.01 - lr: 0.100000 - momentum: 0.000000
|
198 |
+
2024-03-28 09:08:25,216 epoch 21 - iter 3/3 - loss 0.89881944 - time (sec): 0.14 - samples/sec: 5424.95 - lr: 0.100000 - momentum: 0.000000
|
199 |
+
2024-03-28 09:08:25,219 ----------------------------------------------------------------------------------------------------
|
200 |
+
2024-03-28 09:08:25,221 EPOCH 21 done: loss 0.8988 - lr: 0.100000
|
201 |
+
2024-03-28 09:08:25,224 - 0 epochs without improvement
|
202 |
+
2024-03-28 09:08:25,227 ----------------------------------------------------------------------------------------------------
|
203 |
+
2024-03-28 09:08:25,298 epoch 22 - iter 1/3 - loss 0.87613110 - time (sec): 0.07 - samples/sec: 5678.58 - lr: 0.100000 - momentum: 0.000000
|
204 |
+
2024-03-28 09:08:25,360 epoch 22 - iter 2/3 - loss 0.85298542 - time (sec): 0.13 - samples/sec: 5823.45 - lr: 0.100000 - momentum: 0.000000
|
205 |
+
2024-03-28 09:08:25,381 epoch 22 - iter 3/3 - loss 0.85040579 - time (sec): 0.15 - samples/sec: 5127.33 - lr: 0.100000 - momentum: 0.000000
|
206 |
+
2024-03-28 09:08:25,383 ----------------------------------------------------------------------------------------------------
|
207 |
+
2024-03-28 09:08:25,386 EPOCH 22 done: loss 0.8504 - lr: 0.100000
|
208 |
+
2024-03-28 09:08:25,389 - 0 epochs without improvement
|
209 |
+
2024-03-28 09:08:25,391 ----------------------------------------------------------------------------------------------------
|
210 |
+
2024-03-28 09:08:25,454 epoch 23 - iter 1/3 - loss 0.84350519 - time (sec): 0.06 - samples/sec: 6063.21 - lr: 0.100000 - momentum: 0.000000
|
211 |
+
2024-03-28 09:08:25,521 epoch 23 - iter 2/3 - loss 0.80839760 - time (sec): 0.13 - samples/sec: 5952.73 - lr: 0.100000 - momentum: 0.000000
|
212 |
+
2024-03-28 09:08:25,547 epoch 23 - iter 3/3 - loss 0.80830466 - time (sec): 0.15 - samples/sec: 5072.50 - lr: 0.100000 - momentum: 0.000000
|
213 |
+
2024-03-28 09:08:25,549 ----------------------------------------------------------------------------------------------------
|
214 |
+
2024-03-28 09:08:25,551 EPOCH 23 done: loss 0.8083 - lr: 0.100000
|
215 |
+
2024-03-28 09:08:25,553 - 0 epochs without improvement
|
216 |
+
2024-03-28 09:08:25,555 ----------------------------------------------------------------------------------------------------
|
217 |
+
2024-03-28 09:08:25,638 epoch 24 - iter 1/3 - loss 0.81519134 - time (sec): 0.08 - samples/sec: 4674.16 - lr: 0.100000 - momentum: 0.000000
|
218 |
+
2024-03-28 09:08:25,701 epoch 24 - iter 2/3 - loss 0.73801863 - time (sec): 0.14 - samples/sec: 5197.51 - lr: 0.100000 - momentum: 0.000000
|
219 |
+
2024-03-28 09:08:25,725 epoch 24 - iter 3/3 - loss 0.73577389 - time (sec): 0.17 - samples/sec: 4607.71 - lr: 0.100000 - momentum: 0.000000
|
220 |
+
2024-03-28 09:08:25,727 ----------------------------------------------------------------------------------------------------
|
221 |
+
2024-03-28 09:08:25,730 EPOCH 24 done: loss 0.7358 - lr: 0.100000
|
222 |
+
2024-03-28 09:08:25,733 - 0 epochs without improvement
|
223 |
+
2024-03-28 09:08:25,735 ----------------------------------------------------------------------------------------------------
|
224 |
+
2024-03-28 09:08:25,802 epoch 25 - iter 1/3 - loss 0.66769132 - time (sec): 0.06 - samples/sec: 5861.73 - lr: 0.100000 - momentum: 0.000000
|
225 |
+
2024-03-28 09:08:25,871 epoch 25 - iter 2/3 - loss 0.71950535 - time (sec): 0.13 - samples/sec: 5695.03 - lr: 0.100000 - momentum: 0.000000
|
226 |
+
2024-03-28 09:08:25,894 epoch 25 - iter 3/3 - loss 0.72146968 - time (sec): 0.16 - samples/sec: 4988.39 - lr: 0.100000 - momentum: 0.000000
|
227 |
+
2024-03-28 09:08:25,896 ----------------------------------------------------------------------------------------------------
|
228 |
+
2024-03-28 09:08:25,901 EPOCH 25 done: loss 0.7215 - lr: 0.100000
|
229 |
+
2024-03-28 09:08:25,902 - 0 epochs without improvement
|
230 |
+
2024-03-28 09:08:25,906 ----------------------------------------------------------------------------------------------------
|
231 |
+
2024-03-28 09:08:25,965 epoch 26 - iter 1/3 - loss 0.77873421 - time (sec): 0.06 - samples/sec: 6787.99 - lr: 0.100000 - momentum: 0.000000
|
232 |
+
2024-03-28 09:08:26,028 epoch 26 - iter 2/3 - loss 0.79412269 - time (sec): 0.12 - samples/sec: 6309.97 - lr: 0.100000 - momentum: 0.000000
|
233 |
+
2024-03-28 09:08:26,053 epoch 26 - iter 3/3 - loss 0.78410294 - time (sec): 0.14 - samples/sec: 5376.37 - lr: 0.100000 - momentum: 0.000000
|
234 |
+
2024-03-28 09:08:26,055 ----------------------------------------------------------------------------------------------------
|
235 |
+
2024-03-28 09:08:26,056 EPOCH 26 done: loss 0.7841 - lr: 0.100000
|
236 |
+
2024-03-28 09:08:26,057 - 1 epochs without improvement
|
237 |
+
2024-03-28 09:08:26,059 ----------------------------------------------------------------------------------------------------
|
238 |
+
2024-03-28 09:08:26,120 epoch 27 - iter 1/3 - loss 0.67765564 - time (sec): 0.06 - samples/sec: 6209.52 - lr: 0.100000 - momentum: 0.000000
|
239 |
+
2024-03-28 09:08:26,185 epoch 27 - iter 2/3 - loss 0.74440163 - time (sec): 0.12 - samples/sec: 6024.24 - lr: 0.100000 - momentum: 0.000000
|
240 |
+
2024-03-28 09:08:26,211 epoch 27 - iter 3/3 - loss 0.74220062 - time (sec): 0.15 - samples/sec: 5168.46 - lr: 0.100000 - momentum: 0.000000
|
241 |
+
2024-03-28 09:08:26,212 ----------------------------------------------------------------------------------------------------
|
242 |
+
2024-03-28 09:08:26,216 EPOCH 27 done: loss 0.7422 - lr: 0.100000
|
243 |
+
2024-03-28 09:08:26,219 - 2 epochs without improvement
|
244 |
+
2024-03-28 09:08:26,222 ----------------------------------------------------------------------------------------------------
|
245 |
+
2024-03-28 09:08:26,281 epoch 28 - iter 1/3 - loss 0.65576854 - time (sec): 0.06 - samples/sec: 6429.32 - lr: 0.100000 - momentum: 0.000000
|
246 |
+
2024-03-28 09:08:26,346 epoch 28 - iter 2/3 - loss 0.67840381 - time (sec): 0.12 - samples/sec: 6203.36 - lr: 0.100000 - momentum: 0.000000
|
247 |
+
2024-03-28 09:08:26,371 epoch 28 - iter 3/3 - loss 0.69483660 - time (sec): 0.15 - samples/sec: 5328.19 - lr: 0.100000 - momentum: 0.000000
|
248 |
+
2024-03-28 09:08:26,373 ----------------------------------------------------------------------------------------------------
|
249 |
+
2024-03-28 09:08:26,380 EPOCH 28 done: loss 0.6948 - lr: 0.100000
|
250 |
+
2024-03-28 09:08:26,383 - 0 epochs without improvement
|
251 |
+
2024-03-28 09:08:26,385 ----------------------------------------------------------------------------------------------------
|
252 |
+
2024-03-28 09:08:26,453 epoch 29 - iter 1/3 - loss 0.60680922 - time (sec): 0.07 - samples/sec: 5681.74 - lr: 0.100000 - momentum: 0.000000
|
253 |
+
2024-03-28 09:08:26,520 epoch 29 - iter 2/3 - loss 0.71351490 - time (sec): 0.13 - samples/sec: 5698.89 - lr: 0.100000 - momentum: 0.000000
|
254 |
+
2024-03-28 09:08:26,543 epoch 29 - iter 3/3 - loss 0.72190195 - time (sec): 0.16 - samples/sec: 4996.69 - lr: 0.100000 - momentum: 0.000000
|
255 |
+
2024-03-28 09:08:26,545 ----------------------------------------------------------------------------------------------------
|
256 |
+
2024-03-28 09:08:26,547 EPOCH 29 done: loss 0.7219 - lr: 0.100000
|
257 |
+
2024-03-28 09:08:26,551 - 1 epochs without improvement
|
258 |
+
2024-03-28 09:08:26,553 ----------------------------------------------------------------------------------------------------
|
259 |
+
2024-03-28 09:08:26,616 epoch 30 - iter 1/3 - loss 0.54127716 - time (sec): 0.06 - samples/sec: 5980.72 - lr: 0.100000 - momentum: 0.000000
|
260 |
+
2024-03-28 09:08:26,719 epoch 30 - iter 2/3 - loss 0.66156022 - time (sec): 0.16 - samples/sec: 4617.44 - lr: 0.100000 - momentum: 0.000000
|
261 |
+
2024-03-28 09:08:26,754 epoch 30 - iter 3/3 - loss 0.66835733 - time (sec): 0.20 - samples/sec: 3931.30 - lr: 0.100000 - momentum: 0.000000
|
262 |
+
2024-03-28 09:08:26,756 ----------------------------------------------------------------------------------------------------
|
263 |
+
2024-03-28 09:08:26,757 EPOCH 30 done: loss 0.6684 - lr: 0.100000
|
264 |
+
2024-03-28 09:08:26,759 - 0 epochs without improvement
|
265 |
+
2024-03-28 09:08:26,761 ----------------------------------------------------------------------------------------------------
|
266 |
+
2024-03-28 09:08:26,843 epoch 31 - iter 1/3 - loss 0.56766907 - time (sec): 0.08 - samples/sec: 4600.84 - lr: 0.100000 - momentum: 0.000000
|
267 |
+
2024-03-28 09:08:26,931 epoch 31 - iter 2/3 - loss 0.66296679 - time (sec): 0.17 - samples/sec: 4480.14 - lr: 0.100000 - momentum: 0.000000
|
268 |
+
2024-03-28 09:08:26,965 epoch 31 - iter 3/3 - loss 0.66437075 - time (sec): 0.20 - samples/sec: 3851.74 - lr: 0.100000 - momentum: 0.000000
|
269 |
+
2024-03-28 09:08:26,968 ----------------------------------------------------------------------------------------------------
|
270 |
+
2024-03-28 09:08:26,972 EPOCH 31 done: loss 0.6644 - lr: 0.100000
|
271 |
+
2024-03-28 09:08:26,975 - 0 epochs without improvement
|
272 |
+
2024-03-28 09:08:26,979 ----------------------------------------------------------------------------------------------------
|
273 |
+
2024-03-28 09:08:27,072 epoch 32 - iter 1/3 - loss 0.47235793 - time (sec): 0.09 - samples/sec: 4231.03 - lr: 0.100000 - momentum: 0.000000
|
274 |
+
2024-03-28 09:08:27,154 epoch 32 - iter 2/3 - loss 0.66783573 - time (sec): 0.17 - samples/sec: 4445.75 - lr: 0.100000 - momentum: 0.000000
|
275 |
+
2024-03-28 09:08:27,180 epoch 32 - iter 3/3 - loss 0.67434436 - time (sec): 0.20 - samples/sec: 3962.60 - lr: 0.100000 - momentum: 0.000000
|
276 |
+
2024-03-28 09:08:27,185 ----------------------------------------------------------------------------------------------------
|
277 |
+
2024-03-28 09:08:27,187 EPOCH 32 done: loss 0.6743 - lr: 0.100000
|
278 |
+
2024-03-28 09:08:27,189 - 1 epochs without improvement
|
279 |
+
2024-03-28 09:08:27,191 ----------------------------------------------------------------------------------------------------
|
280 |
+
2024-03-28 09:08:27,286 epoch 33 - iter 1/3 - loss 0.51676854 - time (sec): 0.09 - samples/sec: 4329.67 - lr: 0.100000 - momentum: 0.000000
|
281 |
+
2024-03-28 09:08:27,368 epoch 33 - iter 2/3 - loss 0.56572747 - time (sec): 0.17 - samples/sec: 4439.20 - lr: 0.100000 - momentum: 0.000000
|
282 |
+
2024-03-28 09:08:27,393 epoch 33 - iter 3/3 - loss 0.56014238 - time (sec): 0.20 - samples/sec: 3969.22 - lr: 0.100000 - momentum: 0.000000
|
283 |
+
2024-03-28 09:08:27,398 ----------------------------------------------------------------------------------------------------
|
284 |
+
2024-03-28 09:08:27,399 EPOCH 33 done: loss 0.5601 - lr: 0.100000
|
285 |
+
2024-03-28 09:08:27,404 - 0 epochs without improvement
|
286 |
+
2024-03-28 09:08:27,406 ----------------------------------------------------------------------------------------------------
|
287 |
+
2024-03-28 09:08:27,490 epoch 34 - iter 1/3 - loss 0.56149373 - time (sec): 0.08 - samples/sec: 4800.36 - lr: 0.100000 - momentum: 0.000000
|
288 |
+
2024-03-28 09:08:27,571 epoch 34 - iter 2/3 - loss 0.62482820 - time (sec): 0.16 - samples/sec: 4724.24 - lr: 0.100000 - momentum: 0.000000
|
289 |
+
2024-03-28 09:08:27,598 epoch 34 - iter 3/3 - loss 0.62822730 - time (sec): 0.19 - samples/sec: 4169.96 - lr: 0.100000 - momentum: 0.000000
|
290 |
+
2024-03-28 09:08:27,603 ----------------------------------------------------------------------------------------------------
|
291 |
+
2024-03-28 09:08:27,605 EPOCH 34 done: loss 0.6282 - lr: 0.100000
|
292 |
+
2024-03-28 09:08:27,608 - 1 epochs without improvement
|
293 |
+
2024-03-28 09:08:27,611 ----------------------------------------------------------------------------------------------------
|
294 |
+
2024-03-28 09:08:27,687 epoch 35 - iter 1/3 - loss 0.52592365 - time (sec): 0.07 - samples/sec: 5121.35 - lr: 0.100000 - momentum: 0.000000
|
295 |
+
2024-03-28 09:08:27,776 epoch 35 - iter 2/3 - loss 0.55252095 - time (sec): 0.16 - samples/sec: 4680.28 - lr: 0.100000 - momentum: 0.000000
|
296 |
+
2024-03-28 09:08:27,804 epoch 35 - iter 3/3 - loss 0.55461875 - time (sec): 0.19 - samples/sec: 4100.79 - lr: 0.100000 - momentum: 0.000000
|
297 |
+
2024-03-28 09:08:27,807 ----------------------------------------------------------------------------------------------------
|
298 |
+
2024-03-28 09:08:27,810 EPOCH 35 done: loss 0.5546 - lr: 0.100000
|
299 |
+
2024-03-28 09:08:27,812 - 0 epochs without improvement
|
300 |
+
2024-03-28 09:08:27,814 ----------------------------------------------------------------------------------------------------
|
301 |
+
2024-03-28 09:08:27,909 epoch 36 - iter 1/3 - loss 0.55149670 - time (sec): 0.09 - samples/sec: 3986.62 - lr: 0.100000 - momentum: 0.000000
|
302 |
+
2024-03-28 09:08:28,000 epoch 36 - iter 2/3 - loss 0.52226647 - time (sec): 0.18 - samples/sec: 4082.53 - lr: 0.100000 - momentum: 0.000000
|
303 |
+
2024-03-28 09:08:28,040 epoch 36 - iter 3/3 - loss 0.51511517 - time (sec): 0.22 - samples/sec: 3472.83 - lr: 0.100000 - momentum: 0.000000
|
304 |
+
2024-03-28 09:08:28,045 ----------------------------------------------------------------------------------------------------
|
305 |
+
2024-03-28 09:08:28,047 EPOCH 36 done: loss 0.5151 - lr: 0.100000
|
306 |
+
2024-03-28 09:08:28,050 - 0 epochs without improvement
|
307 |
+
2024-03-28 09:08:28,053 ----------------------------------------------------------------------------------------------------
|
308 |
+
2024-03-28 09:08:28,146 epoch 37 - iter 1/3 - loss 0.49687234 - time (sec): 0.09 - samples/sec: 4244.26 - lr: 0.100000 - momentum: 0.000000
|
309 |
+
2024-03-28 09:08:28,228 epoch 37 - iter 2/3 - loss 0.47490515 - time (sec): 0.17 - samples/sec: 4304.77 - lr: 0.100000 - momentum: 0.000000
|
310 |
+
2024-03-28 09:08:28,263 epoch 37 - iter 3/3 - loss 0.48109616 - time (sec): 0.21 - samples/sec: 3743.54 - lr: 0.100000 - momentum: 0.000000
|
311 |
+
2024-03-28 09:08:28,265 ----------------------------------------------------------------------------------------------------
|
312 |
+
2024-03-28 09:08:28,267 EPOCH 37 done: loss 0.4811 - lr: 0.100000
|
313 |
+
2024-03-28 09:08:28,273 - 0 epochs without improvement
|
314 |
+
2024-03-28 09:08:28,276 ----------------------------------------------------------------------------------------------------
|
315 |
+
2024-03-28 09:08:28,371 epoch 38 - iter 1/3 - loss 0.48292834 - time (sec): 0.09 - samples/sec: 4022.76 - lr: 0.100000 - momentum: 0.000000
|
316 |
+
2024-03-28 09:08:28,463 epoch 38 - iter 2/3 - loss 0.60736766 - time (sec): 0.19 - samples/sec: 4059.96 - lr: 0.100000 - momentum: 0.000000
|
317 |
+
2024-03-28 09:08:28,497 epoch 38 - iter 3/3 - loss 0.60272934 - time (sec): 0.22 - samples/sec: 3552.63 - lr: 0.100000 - momentum: 0.000000
|
318 |
+
2024-03-28 09:08:28,499 ----------------------------------------------------------------------------------------------------
|
319 |
+
2024-03-28 09:08:28,502 EPOCH 38 done: loss 0.6027 - lr: 0.100000
|
320 |
+
2024-03-28 09:08:28,505 - 1 epochs without improvement
|
321 |
+
2024-03-28 09:08:28,507 ----------------------------------------------------------------------------------------------------
|
322 |
+
2024-03-28 09:08:28,608 epoch 39 - iter 1/3 - loss 0.46681475 - time (sec): 0.10 - samples/sec: 4013.80 - lr: 0.100000 - momentum: 0.000000
|
323 |
+
2024-03-28 09:08:28,699 epoch 39 - iter 2/3 - loss 0.49050783 - time (sec): 0.19 - samples/sec: 4012.02 - lr: 0.100000 - momentum: 0.000000
|
324 |
+
2024-03-28 09:08:28,731 epoch 39 - iter 3/3 - loss 0.48410297 - time (sec): 0.22 - samples/sec: 3515.46 - lr: 0.100000 - momentum: 0.000000
|
325 |
+
2024-03-28 09:08:28,736 ----------------------------------------------------------------------------------------------------
|
326 |
+
2024-03-28 09:08:28,739 EPOCH 39 done: loss 0.4841 - lr: 0.100000
|
327 |
+
2024-03-28 09:08:28,742 - 2 epochs without improvement
|
328 |
+
2024-03-28 09:08:28,748 ----------------------------------------------------------------------------------------------------
|
329 |
+
2024-03-28 09:08:28,850 epoch 40 - iter 1/3 - loss 0.47415373 - time (sec): 0.10 - samples/sec: 3747.88 - lr: 0.100000 - momentum: 0.000000
|
330 |
+
2024-03-28 09:08:28,916 epoch 40 - iter 2/3 - loss 0.43865486 - time (sec): 0.17 - samples/sec: 4513.33 - lr: 0.100000 - momentum: 0.000000
|
331 |
+
2024-03-28 09:08:28,946 epoch 40 - iter 3/3 - loss 0.44022970 - time (sec): 0.20 - samples/sec: 3985.95 - lr: 0.100000 - momentum: 0.000000
|
332 |
+
2024-03-28 09:08:28,948 ----------------------------------------------------------------------------------------------------
|
333 |
+
2024-03-28 09:08:28,950 EPOCH 40 done: loss 0.4402 - lr: 0.100000
|
334 |
+
2024-03-28 09:08:28,953 - 0 epochs without improvement
|
335 |
+
2024-03-28 09:08:28,955 ----------------------------------------------------------------------------------------------------
|
336 |
+
2024-03-28 09:08:29,022 epoch 41 - iter 1/3 - loss 0.39505556 - time (sec): 0.06 - samples/sec: 6165.00 - lr: 0.100000 - momentum: 0.000000
|
337 |
+
2024-03-28 09:08:29,094 epoch 41 - iter 2/3 - loss 0.45856506 - time (sec): 0.14 - samples/sec: 5563.23 - lr: 0.100000 - momentum: 0.000000
|
338 |
+
2024-03-28 09:08:29,121 epoch 41 - iter 3/3 - loss 0.46752058 - time (sec): 0.16 - samples/sec: 4775.73 - lr: 0.100000 - momentum: 0.000000
|
339 |
+
2024-03-28 09:08:29,123 ----------------------------------------------------------------------------------------------------
|
340 |
+
2024-03-28 09:08:29,126 EPOCH 41 done: loss 0.4675 - lr: 0.100000
|
341 |
+
2024-03-28 09:08:29,129 - 1 epochs without improvement
|
342 |
+
2024-03-28 09:08:29,132 ----------------------------------------------------------------------------------------------------
|
343 |
+
2024-03-28 09:08:29,202 epoch 42 - iter 1/3 - loss 0.40104817 - time (sec): 0.07 - samples/sec: 5656.93 - lr: 0.100000 - momentum: 0.000000
|
344 |
+
2024-03-28 09:08:29,270 epoch 42 - iter 2/3 - loss 0.44249168 - time (sec): 0.14 - samples/sec: 5554.20 - lr: 0.100000 - momentum: 0.000000
|
345 |
+
2024-03-28 09:08:29,295 epoch 42 - iter 3/3 - loss 0.45211151 - time (sec): 0.16 - samples/sec: 4831.38 - lr: 0.100000 - momentum: 0.000000
|
346 |
+
2024-03-28 09:08:29,296 ----------------------------------------------------------------------------------------------------
|
347 |
+
2024-03-28 09:08:29,299 EPOCH 42 done: loss 0.4521 - lr: 0.100000
|
348 |
+
2024-03-28 09:08:29,301 - 2 epochs without improvement
|
349 |
+
2024-03-28 09:08:29,303 ----------------------------------------------------------------------------------------------------
|
350 |
+
2024-03-28 09:08:29,373 epoch 43 - iter 1/3 - loss 0.42974738 - time (sec): 0.07 - samples/sec: 5498.50 - lr: 0.100000 - momentum: 0.000000
|
351 |
+
2024-03-28 09:08:29,445 epoch 43 - iter 2/3 - loss 0.48877276 - time (sec): 0.14 - samples/sec: 5430.97 - lr: 0.100000 - momentum: 0.000000
|
352 |
+
2024-03-28 09:08:29,471 epoch 43 - iter 3/3 - loss 0.50198705 - time (sec): 0.17 - samples/sec: 4719.28 - lr: 0.100000 - momentum: 0.000000
|
353 |
+
2024-03-28 09:08:29,473 ----------------------------------------------------------------------------------------------------
|
354 |
+
2024-03-28 09:08:29,475 EPOCH 43 done: loss 0.5020 - lr: 0.100000
|
355 |
+
2024-03-28 09:08:29,477 - 3 epochs without improvement
|
356 |
+
2024-03-28 09:08:29,480 ----------------------------------------------------------------------------------------------------
|
357 |
+
2024-03-28 09:08:29,553 epoch 44 - iter 1/3 - loss 0.34393486 - time (sec): 0.07 - samples/sec: 5398.09 - lr: 0.100000 - momentum: 0.000000
|
358 |
+
2024-03-28 09:08:29,622 epoch 44 - iter 2/3 - loss 0.42744327 - time (sec): 0.14 - samples/sec: 5421.30 - lr: 0.100000 - momentum: 0.000000
|
359 |
+
2024-03-28 09:08:29,646 epoch 44 - iter 3/3 - loss 0.43221926 - time (sec): 0.16 - samples/sec: 4738.09 - lr: 0.100000 - momentum: 0.000000
|
360 |
+
2024-03-28 09:08:29,648 ----------------------------------------------------------------------------------------------------
|
361 |
+
2024-03-28 09:08:29,651 EPOCH 44 done: loss 0.4322 - lr: 0.100000
|
362 |
+
2024-03-28 09:08:29,654 - 0 epochs without improvement
|
363 |
+
2024-03-28 09:08:29,657 ----------------------------------------------------------------------------------------------------
|
364 |
+
2024-03-28 09:08:29,719 epoch 45 - iter 1/3 - loss 0.35080136 - time (sec): 0.06 - samples/sec: 6469.89 - lr: 0.100000 - momentum: 0.000000
|
365 |
+
2024-03-28 09:08:29,789 epoch 45 - iter 2/3 - loss 0.45650777 - time (sec): 0.13 - samples/sec: 5890.71 - lr: 0.100000 - momentum: 0.000000
|
366 |
+
2024-03-28 09:08:29,822 epoch 45 - iter 3/3 - loss 0.45322049 - time (sec): 0.16 - samples/sec: 4842.83 - lr: 0.100000 - momentum: 0.000000
|
367 |
+
2024-03-28 09:08:29,825 ----------------------------------------------------------------------------------------------------
|
368 |
+
2024-03-28 09:08:29,829 EPOCH 45 done: loss 0.4532 - lr: 0.100000
|
369 |
+
2024-03-28 09:08:29,832 - 1 epochs without improvement
|
370 |
+
2024-03-28 09:08:29,835 ----------------------------------------------------------------------------------------------------
|
371 |
+
2024-03-28 09:08:29,911 epoch 46 - iter 1/3 - loss 0.41917917 - time (sec): 0.07 - samples/sec: 5213.37 - lr: 0.100000 - momentum: 0.000000
|
372 |
+
2024-03-28 09:08:29,981 epoch 46 - iter 2/3 - loss 0.44351342 - time (sec): 0.14 - samples/sec: 5299.67 - lr: 0.100000 - momentum: 0.000000
|
373 |
+
2024-03-28 09:08:30,007 epoch 46 - iter 3/3 - loss 0.43757010 - time (sec): 0.17 - samples/sec: 4606.63 - lr: 0.100000 - momentum: 0.000000
|
374 |
+
2024-03-28 09:08:30,009 ----------------------------------------------------------------------------------------------------
|
375 |
+
2024-03-28 09:08:30,012 EPOCH 46 done: loss 0.4376 - lr: 0.100000
|
376 |
+
2024-03-28 09:08:30,018 - 2 epochs without improvement
|
377 |
+
2024-03-28 09:08:30,021 ----------------------------------------------------------------------------------------------------
|
378 |
+
2024-03-28 09:08:30,087 epoch 47 - iter 1/3 - loss 0.43355327 - time (sec): 0.06 - samples/sec: 6018.18 - lr: 0.100000 - momentum: 0.000000
|
379 |
+
2024-03-28 09:08:30,151 epoch 47 - iter 2/3 - loss 0.47636440 - time (sec): 0.13 - samples/sec: 5894.94 - lr: 0.100000 - momentum: 0.000000
|
380 |
+
2024-03-28 09:08:30,178 epoch 47 - iter 3/3 - loss 0.46188437 - time (sec): 0.15 - samples/sec: 5040.05 - lr: 0.100000 - momentum: 0.000000
|
381 |
+
2024-03-28 09:08:30,180 ----------------------------------------------------------------------------------------------------
|
382 |
+
2024-03-28 09:08:30,182 EPOCH 47 done: loss 0.4619 - lr: 0.100000
|
383 |
+
2024-03-28 09:08:30,184 - 3 epochs without improvement
|
384 |
+
2024-03-28 09:08:30,186 ----------------------------------------------------------------------------------------------------
|
385 |
+
2024-03-28 09:08:30,253 epoch 48 - iter 1/3 - loss 0.41156757 - time (sec): 0.06 - samples/sec: 5842.89 - lr: 0.100000 - momentum: 0.000000
|
386 |
+
2024-03-28 09:08:30,320 epoch 48 - iter 2/3 - loss 0.43935062 - time (sec): 0.13 - samples/sec: 5763.82 - lr: 0.100000 - momentum: 0.000000
|
387 |
+
2024-03-28 09:08:30,344 epoch 48 - iter 3/3 - loss 0.43557776 - time (sec): 0.16 - samples/sec: 5008.81 - lr: 0.100000 - momentum: 0.000000
|
388 |
+
2024-03-28 09:08:30,345 ----------------------------------------------------------------------------------------------------
|
389 |
+
2024-03-28 09:08:30,349 EPOCH 48 done: loss 0.4356 - lr: 0.100000
|
390 |
+
2024-03-28 09:08:30,352 - 4 epochs without improvement (above 'patience')-> annealing learning_rate to [0.05]
|
391 |
+
2024-03-28 09:08:30,355 ----------------------------------------------------------------------------------------------------
|
392 |
+
2024-03-28 09:08:30,421 epoch 49 - iter 1/3 - loss 0.39220638 - time (sec): 0.06 - samples/sec: 6083.85 - lr: 0.050000 - momentum: 0.000000
|
393 |
+
2024-03-28 09:08:30,488 epoch 49 - iter 2/3 - loss 0.36613670 - time (sec): 0.13 - samples/sec: 5923.39 - lr: 0.050000 - momentum: 0.000000
|
394 |
+
2024-03-28 09:08:30,508 epoch 49 - iter 3/3 - loss 0.36897407 - time (sec): 0.15 - samples/sec: 5215.96 - lr: 0.050000 - momentum: 0.000000
|
395 |
+
2024-03-28 09:08:30,510 ----------------------------------------------------------------------------------------------------
|
396 |
+
2024-03-28 09:08:30,518 EPOCH 49 done: loss 0.3690 - lr: 0.050000
|
397 |
+
2024-03-28 09:08:30,521 - 0 epochs without improvement
|
398 |
+
2024-03-28 09:08:30,524 ----------------------------------------------------------------------------------------------------
|
399 |
+
2024-03-28 09:08:30,591 epoch 50 - iter 1/3 - loss 0.33464823 - time (sec): 0.06 - samples/sec: 5912.48 - lr: 0.050000 - momentum: 0.000000
|
400 |
+
2024-03-28 09:08:30,657 epoch 50 - iter 2/3 - loss 0.35002112 - time (sec): 0.13 - samples/sec: 5806.96 - lr: 0.050000 - momentum: 0.000000
|
401 |
+
2024-03-28 09:08:30,681 epoch 50 - iter 3/3 - loss 0.35487791 - time (sec): 0.15 - samples/sec: 5046.70 - lr: 0.050000 - momentum: 0.000000
|
402 |
+
2024-03-28 09:08:30,682 ----------------------------------------------------------------------------------------------------
|
403 |
+
2024-03-28 09:08:30,686 EPOCH 50 done: loss 0.3549 - lr: 0.050000
|
404 |
+
2024-03-28 09:08:30,689 - 0 epochs without improvement
|
405 |
+
2024-03-28 09:08:30,692 ----------------------------------------------------------------------------------------------------
|
406 |
+
2024-03-28 09:08:30,758 epoch 51 - iter 1/3 - loss 0.31067178 - time (sec): 0.06 - samples/sec: 6208.08 - lr: 0.050000 - momentum: 0.000000
|
407 |
+
2024-03-28 09:08:30,829 epoch 51 - iter 2/3 - loss 0.32343769 - time (sec): 0.13 - samples/sec: 5682.84 - lr: 0.050000 - momentum: 0.000000
|
408 |
+
2024-03-28 09:08:30,856 epoch 51 - iter 3/3 - loss 0.31745014 - time (sec): 0.16 - samples/sec: 4862.36 - lr: 0.050000 - momentum: 0.000000
|
409 |
+
2024-03-28 09:08:30,858 ----------------------------------------------------------------------------------------------------
|
410 |
+
2024-03-28 09:08:30,861 EPOCH 51 done: loss 0.3175 - lr: 0.050000
|
411 |
+
2024-03-28 09:08:30,864 - 0 epochs without improvement
|
412 |
+
2024-03-28 09:08:30,868 ----------------------------------------------------------------------------------------------------
|
413 |
+
2024-03-28 09:08:30,930 epoch 52 - iter 1/3 - loss 0.27665802 - time (sec): 0.06 - samples/sec: 6067.43 - lr: 0.050000 - momentum: 0.000000
|
414 |
+
2024-03-28 09:08:31,002 epoch 52 - iter 2/3 - loss 0.30771992 - time (sec): 0.13 - samples/sec: 5702.05 - lr: 0.050000 - momentum: 0.000000
|
415 |
+
2024-03-28 09:08:31,029 epoch 52 - iter 3/3 - loss 0.30199688 - time (sec): 0.16 - samples/sec: 4909.62 - lr: 0.050000 - momentum: 0.000000
|
416 |
+
2024-03-28 09:08:31,031 ----------------------------------------------------------------------------------------------------
|
417 |
+
2024-03-28 09:08:31,035 EPOCH 52 done: loss 0.3020 - lr: 0.050000
|
418 |
+
2024-03-28 09:08:31,038 - 0 epochs without improvement
|
419 |
+
2024-03-28 09:08:31,040 ----------------------------------------------------------------------------------------------------
|
420 |
+
2024-03-28 09:08:31,108 epoch 53 - iter 1/3 - loss 0.33830257 - time (sec): 0.07 - samples/sec: 5664.12 - lr: 0.050000 - momentum: 0.000000
|
421 |
+
2024-03-28 09:08:31,176 epoch 53 - iter 2/3 - loss 0.33237701 - time (sec): 0.13 - samples/sec: 5624.94 - lr: 0.050000 - momentum: 0.000000
|
422 |
+
2024-03-28 09:08:31,206 epoch 53 - iter 3/3 - loss 0.32609021 - time (sec): 0.16 - samples/sec: 4769.13 - lr: 0.050000 - momentum: 0.000000
|
423 |
+
2024-03-28 09:08:31,209 ----------------------------------------------------------------------------------------------------
|
424 |
+
2024-03-28 09:08:31,211 EPOCH 53 done: loss 0.3261 - lr: 0.050000
|
425 |
+
2024-03-28 09:08:31,212 - 1 epochs without improvement
|
426 |
+
2024-03-28 09:08:31,213 ----------------------------------------------------------------------------------------------------
|
427 |
+
2024-03-28 09:08:31,286 epoch 54 - iter 1/3 - loss 0.32231420 - time (sec): 0.07 - samples/sec: 5390.92 - lr: 0.050000 - momentum: 0.000000
|
428 |
+
2024-03-28 09:08:31,353 epoch 54 - iter 2/3 - loss 0.29146483 - time (sec): 0.14 - samples/sec: 5477.77 - lr: 0.050000 - momentum: 0.000000
|
429 |
+
2024-03-28 09:08:31,377 epoch 54 - iter 3/3 - loss 0.29709430 - time (sec): 0.16 - samples/sec: 4806.07 - lr: 0.050000 - momentum: 0.000000
|
430 |
+
2024-03-28 09:08:31,379 ----------------------------------------------------------------------------------------------------
|
431 |
+
2024-03-28 09:08:31,381 EPOCH 54 done: loss 0.2971 - lr: 0.050000
|
432 |
+
2024-03-28 09:08:31,383 - 0 epochs without improvement
|
433 |
+
2024-03-28 09:08:31,386 ----------------------------------------------------------------------------------------------------
|
434 |
+
2024-03-28 09:08:31,449 epoch 55 - iter 1/3 - loss 0.23736323 - time (sec): 0.06 - samples/sec: 6007.27 - lr: 0.050000 - momentum: 0.000000
|
435 |
+
2024-03-28 09:08:31,518 epoch 55 - iter 2/3 - loss 0.27148632 - time (sec): 0.13 - samples/sec: 5795.54 - lr: 0.050000 - momentum: 0.000000
|
436 |
+
2024-03-28 09:08:31,544 epoch 55 - iter 3/3 - loss 0.27109961 - time (sec): 0.16 - samples/sec: 4991.08 - lr: 0.050000 - momentum: 0.000000
|
437 |
+
2024-03-28 09:08:31,546 ----------------------------------------------------------------------------------------------------
|
438 |
+
2024-03-28 09:08:31,548 EPOCH 55 done: loss 0.2711 - lr: 0.050000
|
439 |
+
2024-03-28 09:08:31,551 - 0 epochs without improvement
|
440 |
+
2024-03-28 09:08:31,553 ----------------------------------------------------------------------------------------------------
|
441 |
+
2024-03-28 09:08:31,621 epoch 56 - iter 1/3 - loss 0.25377297 - time (sec): 0.07 - samples/sec: 5827.21 - lr: 0.050000 - momentum: 0.000000
|
442 |
+
2024-03-28 09:08:31,689 epoch 56 - iter 2/3 - loss 0.22560634 - time (sec): 0.13 - samples/sec: 5653.90 - lr: 0.050000 - momentum: 0.000000
|
443 |
+
2024-03-28 09:08:31,714 epoch 56 - iter 3/3 - loss 0.23113600 - time (sec): 0.16 - samples/sec: 4917.05 - lr: 0.050000 - momentum: 0.000000
|
444 |
+
2024-03-28 09:08:31,716 ----------------------------------------------------------------------------------------------------
|
445 |
+
2024-03-28 09:08:31,719 EPOCH 56 done: loss 0.2311 - lr: 0.050000
|
446 |
+
2024-03-28 09:08:31,721 - 0 epochs without improvement
|
447 |
+
2024-03-28 09:08:31,723 ----------------------------------------------------------------------------------------------------
|
448 |
+
2024-03-28 09:08:31,794 epoch 57 - iter 1/3 - loss 0.26957983 - time (sec): 0.07 - samples/sec: 5797.05 - lr: 0.050000 - momentum: 0.000000
|
449 |
+
2024-03-28 09:08:31,871 epoch 57 - iter 2/3 - loss 0.25384182 - time (sec): 0.15 - samples/sec: 5161.24 - lr: 0.050000 - momentum: 0.000000
|
450 |
+
2024-03-28 09:08:31,895 epoch 57 - iter 3/3 - loss 0.25095547 - time (sec): 0.17 - samples/sec: 4586.07 - lr: 0.050000 - momentum: 0.000000
|
451 |
+
2024-03-28 09:08:31,897 ----------------------------------------------------------------------------------------------------
|
452 |
+
2024-03-28 09:08:31,900 EPOCH 57 done: loss 0.2510 - lr: 0.050000
|
453 |
+
2024-03-28 09:08:31,902 - 1 epochs without improvement
|
454 |
+
2024-03-28 09:08:31,904 ----------------------------------------------------------------------------------------------------
|
455 |
+
2024-03-28 09:08:31,972 epoch 58 - iter 1/3 - loss 0.27891893 - time (sec): 0.06 - samples/sec: 5933.41 - lr: 0.050000 - momentum: 0.000000
|
456 |
+
2024-03-28 09:08:32,036 epoch 58 - iter 2/3 - loss 0.29004808 - time (sec): 0.13 - samples/sec: 5876.73 - lr: 0.050000 - momentum: 0.000000
|
457 |
+
2024-03-28 09:08:32,059 epoch 58 - iter 3/3 - loss 0.28334943 - time (sec): 0.15 - samples/sec: 5115.74 - lr: 0.050000 - momentum: 0.000000
|
458 |
+
2024-03-28 09:08:32,061 ----------------------------------------------------------------------------------------------------
|
459 |
+
2024-03-28 09:08:32,063 EPOCH 58 done: loss 0.2833 - lr: 0.050000
|
460 |
+
2024-03-28 09:08:32,065 - 2 epochs without improvement
|
461 |
+
2024-03-28 09:08:32,067 ----------------------------------------------------------------------------------------------------
|
462 |
+
2024-03-28 09:08:32,134 epoch 59 - iter 1/3 - loss 0.24056747 - time (sec): 0.06 - samples/sec: 5868.06 - lr: 0.050000 - momentum: 0.000000
|
463 |
+
2024-03-28 09:08:32,202 epoch 59 - iter 2/3 - loss 0.24723329 - time (sec): 0.13 - samples/sec: 5678.02 - lr: 0.050000 - momentum: 0.000000
|
464 |
+
2024-03-28 09:08:32,228 epoch 59 - iter 3/3 - loss 0.24669100 - time (sec): 0.16 - samples/sec: 4929.81 - lr: 0.050000 - momentum: 0.000000
|
465 |
+
2024-03-28 09:08:32,229 ----------------------------------------------------------------------------------------------------
|
466 |
+
2024-03-28 09:08:32,231 EPOCH 59 done: loss 0.2467 - lr: 0.050000
|
467 |
+
2024-03-28 09:08:32,233 - 3 epochs without improvement
|
468 |
+
2024-03-28 09:08:32,235 ----------------------------------------------------------------------------------------------------
|
469 |
+
2024-03-28 09:08:32,301 epoch 60 - iter 1/3 - loss 0.36381199 - time (sec): 0.06 - samples/sec: 5833.02 - lr: 0.050000 - momentum: 0.000000
|
470 |
+
2024-03-28 09:08:32,369 epoch 60 - iter 2/3 - loss 0.30104175 - time (sec): 0.13 - samples/sec: 5787.29 - lr: 0.050000 - momentum: 0.000000
|
471 |
+
2024-03-28 09:08:32,392 epoch 60 - iter 3/3 - loss 0.30143368 - time (sec): 0.15 - samples/sec: 5058.64 - lr: 0.050000 - momentum: 0.000000
|
472 |
+
2024-03-28 09:08:32,394 ----------------------------------------------------------------------------------------------------
|
473 |
+
2024-03-28 09:08:32,396 EPOCH 60 done: loss 0.3014 - lr: 0.050000
|
474 |
+
2024-03-28 09:08:32,398 - 4 epochs without improvement (above 'patience')-> annealing learning_rate to [0.025]
|
475 |
+
2024-03-28 09:08:32,401 ----------------------------------------------------------------------------------------------------
|
476 |
+
2024-03-28 09:08:32,468 epoch 61 - iter 1/3 - loss 0.27097580 - time (sec): 0.07 - samples/sec: 5921.59 - lr: 0.025000 - momentum: 0.000000
|
477 |
+
2024-03-28 09:08:32,534 epoch 61 - iter 2/3 - loss 0.25132273 - time (sec): 0.13 - samples/sec: 5734.84 - lr: 0.025000 - momentum: 0.000000
|
478 |
+
2024-03-28 09:08:32,561 epoch 61 - iter 3/3 - loss 0.24710534 - time (sec): 0.16 - samples/sec: 4935.61 - lr: 0.025000 - momentum: 0.000000
|
479 |
+
2024-03-28 09:08:32,563 ----------------------------------------------------------------------------------------------------
|
480 |
+
2024-03-28 09:08:32,565 EPOCH 61 done: loss 0.2471 - lr: 0.025000
|
481 |
+
2024-03-28 09:08:32,568 - 1 epochs without improvement
|
482 |
+
2024-03-28 09:08:32,570 ----------------------------------------------------------------------------------------------------
|
483 |
+
2024-03-28 09:08:32,635 epoch 62 - iter 1/3 - loss 0.22992023 - time (sec): 0.06 - samples/sec: 6211.06 - lr: 0.025000 - momentum: 0.000000
|
484 |
+
2024-03-28 09:08:32,699 epoch 62 - iter 2/3 - loss 0.22807611 - time (sec): 0.13 - samples/sec: 6012.05 - lr: 0.025000 - momentum: 0.000000
|
485 |
+
2024-03-28 09:08:32,721 epoch 62 - iter 3/3 - loss 0.22695615 - time (sec): 0.15 - samples/sec: 5270.95 - lr: 0.025000 - momentum: 0.000000
|
486 |
+
2024-03-28 09:08:32,722 ----------------------------------------------------------------------------------------------------
|
487 |
+
2024-03-28 09:08:32,725 EPOCH 62 done: loss 0.2270 - lr: 0.025000
|
488 |
+
2024-03-28 09:08:32,727 - 0 epochs without improvement
|
489 |
+
2024-03-28 09:08:32,729 ----------------------------------------------------------------------------------------------------
|
490 |
+
2024-03-28 09:08:32,793 epoch 63 - iter 1/3 - loss 0.20431773 - time (sec): 0.06 - samples/sec: 6161.30 - lr: 0.025000 - momentum: 0.000000
|
491 |
+
2024-03-28 09:08:32,861 epoch 63 - iter 2/3 - loss 0.22571899 - time (sec): 0.13 - samples/sec: 5807.57 - lr: 0.025000 - momentum: 0.000000
|
492 |
+
2024-03-28 09:08:32,896 epoch 63 - iter 3/3 - loss 0.22545184 - time (sec): 0.17 - samples/sec: 4699.89 - lr: 0.025000 - momentum: 0.000000
|
493 |
+
2024-03-28 09:08:32,898 ----------------------------------------------------------------------------------------------------
|
494 |
+
2024-03-28 09:08:32,900 EPOCH 63 done: loss 0.2255 - lr: 0.025000
|
495 |
+
2024-03-28 09:08:32,903 - 0 epochs without improvement
|
496 |
+
2024-03-28 09:08:32,905 ----------------------------------------------------------------------------------------------------
|
497 |
+
2024-03-28 09:08:32,975 epoch 64 - iter 1/3 - loss 0.23394853 - time (sec): 0.07 - samples/sec: 5722.79 - lr: 0.025000 - momentum: 0.000000
|
498 |
+
2024-03-28 09:08:33,040 epoch 64 - iter 2/3 - loss 0.21575960 - time (sec): 0.13 - samples/sec: 5699.75 - lr: 0.025000 - momentum: 0.000000
|
499 |
+
2024-03-28 09:08:33,064 epoch 64 - iter 3/3 - loss 0.21618913 - time (sec): 0.16 - samples/sec: 4969.07 - lr: 0.025000 - momentum: 0.000000
|
500 |
+
2024-03-28 09:08:33,065 ----------------------------------------------------------------------------------------------------
|
501 |
+
2024-03-28 09:08:33,068 EPOCH 64 done: loss 0.2162 - lr: 0.025000
|
502 |
+
2024-03-28 09:08:33,070 - 0 epochs without improvement
|
503 |
+
2024-03-28 09:08:33,073 ----------------------------------------------------------------------------------------------------
|
504 |
+
2024-03-28 09:08:33,135 epoch 65 - iter 1/3 - loss 0.20376337 - time (sec): 0.06 - samples/sec: 6044.78 - lr: 0.025000 - momentum: 0.000000
|
505 |
+
2024-03-28 09:08:33,206 epoch 65 - iter 2/3 - loss 0.22490820 - time (sec): 0.13 - samples/sec: 5746.62 - lr: 0.025000 - momentum: 0.000000
|
506 |
+
2024-03-28 09:08:33,230 epoch 65 - iter 3/3 - loss 0.23571646 - time (sec): 0.16 - samples/sec: 4993.89 - lr: 0.025000 - momentum: 0.000000
|
507 |
+
2024-03-28 09:08:33,232 ----------------------------------------------------------------------------------------------------
|
508 |
+
2024-03-28 09:08:33,235 EPOCH 65 done: loss 0.2357 - lr: 0.025000
|
509 |
+
2024-03-28 09:08:33,237 - 1 epochs without improvement
|
510 |
+
2024-03-28 09:08:33,239 ----------------------------------------------------------------------------------------------------
|
511 |
+
2024-03-28 09:08:33,309 epoch 66 - iter 1/3 - loss 0.19798712 - time (sec): 0.07 - samples/sec: 5541.37 - lr: 0.025000 - momentum: 0.000000
|
512 |
+
2024-03-28 09:08:33,375 epoch 66 - iter 2/3 - loss 0.23232096 - time (sec): 0.13 - samples/sec: 5608.84 - lr: 0.025000 - momentum: 0.000000
|
513 |
+
2024-03-28 09:08:33,401 epoch 66 - iter 3/3 - loss 0.23059462 - time (sec): 0.16 - samples/sec: 4867.50 - lr: 0.025000 - momentum: 0.000000
|
514 |
+
2024-03-28 09:08:33,402 ----------------------------------------------------------------------------------------------------
|
515 |
+
2024-03-28 09:08:33,405 EPOCH 66 done: loss 0.2306 - lr: 0.025000
|
516 |
+
2024-03-28 09:08:33,408 - 2 epochs without improvement
|
517 |
+
2024-03-28 09:08:33,409 ----------------------------------------------------------------------------------------------------
|
518 |
+
2024-03-28 09:08:33,483 epoch 67 - iter 1/3 - loss 0.21222671 - time (sec): 0.07 - samples/sec: 5556.93 - lr: 0.025000 - momentum: 0.000000
|
519 |
+
2024-03-28 09:08:33,548 epoch 67 - iter 2/3 - loss 0.23658420 - time (sec): 0.14 - samples/sec: 5581.78 - lr: 0.025000 - momentum: 0.000000
|
520 |
+
2024-03-28 09:08:33,573 epoch 67 - iter 3/3 - loss 0.23513228 - time (sec): 0.16 - samples/sec: 4873.20 - lr: 0.025000 - momentum: 0.000000
|
521 |
+
2024-03-28 09:08:33,574 ----------------------------------------------------------------------------------------------------
|
522 |
+
2024-03-28 09:08:33,577 EPOCH 67 done: loss 0.2351 - lr: 0.025000
|
523 |
+
2024-03-28 09:08:33,579 - 3 epochs without improvement
|
524 |
+
2024-03-28 09:08:33,582 ----------------------------------------------------------------------------------------------------
|
525 |
+
2024-03-28 09:08:33,650 epoch 68 - iter 1/3 - loss 0.20024892 - time (sec): 0.07 - samples/sec: 5705.76 - lr: 0.025000 - momentum: 0.000000
|
526 |
+
2024-03-28 09:08:33,723 epoch 68 - iter 2/3 - loss 0.24506107 - time (sec): 0.14 - samples/sec: 5452.59 - lr: 0.025000 - momentum: 0.000000
|
527 |
+
2024-03-28 09:08:33,746 epoch 68 - iter 3/3 - loss 0.24463388 - time (sec): 0.16 - samples/sec: 4800.57 - lr: 0.025000 - momentum: 0.000000
|
528 |
+
2024-03-28 09:08:33,748 ----------------------------------------------------------------------------------------------------
|
529 |
+
2024-03-28 09:08:33,751 EPOCH 68 done: loss 0.2446 - lr: 0.025000
|
530 |
+
2024-03-28 09:08:33,753 - 4 epochs without improvement (above 'patience')-> annealing learning_rate to [0.0125]
|
531 |
+
2024-03-28 09:08:33,755 ----------------------------------------------------------------------------------------------------
|
532 |
+
2024-03-28 09:08:33,820 epoch 69 - iter 1/3 - loss 0.21504179 - time (sec): 0.06 - samples/sec: 6058.29 - lr: 0.012500 - momentum: 0.000000
|
533 |
+
2024-03-28 09:08:33,886 epoch 69 - iter 2/3 - loss 0.21413674 - time (sec): 0.13 - samples/sec: 5940.03 - lr: 0.012500 - momentum: 0.000000
|
534 |
+
2024-03-28 09:08:33,919 epoch 69 - iter 3/3 - loss 0.21118687 - time (sec): 0.16 - samples/sec: 4841.80 - lr: 0.012500 - momentum: 0.000000
|
535 |
+
2024-03-28 09:08:33,921 ----------------------------------------------------------------------------------------------------
|
536 |
+
2024-03-28 09:08:33,923 EPOCH 69 done: loss 0.2112 - lr: 0.012500
|
537 |
+
2024-03-28 09:08:33,925 - 0 epochs without improvement
|
538 |
+
2024-03-28 09:08:33,927 ----------------------------------------------------------------------------------------------------
|
539 |
+
2024-03-28 09:08:33,995 epoch 70 - iter 1/3 - loss 0.22739715 - time (sec): 0.07 - samples/sec: 5485.75 - lr: 0.012500 - momentum: 0.000000
|
540 |
+
2024-03-28 09:08:34,061 epoch 70 - iter 2/3 - loss 0.25014319 - time (sec): 0.13 - samples/sec: 5710.43 - lr: 0.012500 - momentum: 0.000000
|
541 |
+
2024-03-28 09:08:34,085 epoch 70 - iter 3/3 - loss 0.25337325 - time (sec): 0.16 - samples/sec: 4971.79 - lr: 0.012500 - momentum: 0.000000
|
542 |
+
2024-03-28 09:08:34,087 ----------------------------------------------------------------------------------------------------
|
543 |
+
2024-03-28 09:08:34,090 EPOCH 70 done: loss 0.2534 - lr: 0.012500
|
544 |
+
2024-03-28 09:08:34,092 - 1 epochs without improvement
|
545 |
+
2024-03-28 09:08:34,094 ----------------------------------------------------------------------------------------------------
|
546 |
+
2024-03-28 09:08:34,160 epoch 71 - iter 1/3 - loss 0.24353060 - time (sec): 0.06 - samples/sec: 5866.57 - lr: 0.012500 - momentum: 0.000000
|
547 |
+
2024-03-28 09:08:34,228 epoch 71 - iter 2/3 - loss 0.21777601 - time (sec): 0.13 - samples/sec: 5735.40 - lr: 0.012500 - momentum: 0.000000
|
548 |
+
2024-03-28 09:08:34,251 epoch 71 - iter 3/3 - loss 0.22126061 - time (sec): 0.16 - samples/sec: 5025.26 - lr: 0.012500 - momentum: 0.000000
|
549 |
+
2024-03-28 09:08:34,252 ----------------------------------------------------------------------------------------------------
|
550 |
+
2024-03-28 09:08:34,254 EPOCH 71 done: loss 0.2213 - lr: 0.012500
|
551 |
+
2024-03-28 09:08:34,257 - 2 epochs without improvement
|
552 |
+
2024-03-28 09:08:34,259 ----------------------------------------------------------------------------------------------------
|
553 |
+
2024-03-28 09:08:34,328 epoch 72 - iter 1/3 - loss 0.19077828 - time (sec): 0.07 - samples/sec: 5835.39 - lr: 0.012500 - momentum: 0.000000
|
554 |
+
2024-03-28 09:08:34,390 epoch 72 - iter 2/3 - loss 0.20655965 - time (sec): 0.13 - samples/sec: 5885.98 - lr: 0.012500 - momentum: 0.000000
|
555 |
+
2024-03-28 09:08:34,412 epoch 72 - iter 3/3 - loss 0.20427307 - time (sec): 0.15 - samples/sec: 5150.74 - lr: 0.012500 - momentum: 0.000000
|
556 |
+
2024-03-28 09:08:34,416 ----------------------------------------------------------------------------------------------------
|
557 |
+
2024-03-28 09:08:34,419 EPOCH 72 done: loss 0.2043 - lr: 0.012500
|
558 |
+
2024-03-28 09:08:34,421 - 0 epochs without improvement
|
559 |
+
2024-03-28 09:08:34,424 ----------------------------------------------------------------------------------------------------
|
560 |
+
2024-03-28 09:08:34,493 epoch 73 - iter 1/3 - loss 0.20394309 - time (sec): 0.07 - samples/sec: 5939.40 - lr: 0.012500 - momentum: 0.000000
|
561 |
+
2024-03-28 09:08:34,555 epoch 73 - iter 2/3 - loss 0.20850289 - time (sec): 0.13 - samples/sec: 5859.13 - lr: 0.012500 - momentum: 0.000000
|
562 |
+
2024-03-28 09:08:34,579 epoch 73 - iter 3/3 - loss 0.21953239 - time (sec): 0.15 - samples/sec: 5098.95 - lr: 0.012500 - momentum: 0.000000
|
563 |
+
2024-03-28 09:08:34,580 ----------------------------------------------------------------------------------------------------
|
564 |
+
2024-03-28 09:08:34,583 EPOCH 73 done: loss 0.2195 - lr: 0.012500
|
565 |
+
2024-03-28 09:08:34,586 - 1 epochs without improvement
|
566 |
+
2024-03-28 09:08:34,588 ----------------------------------------------------------------------------------------------------
|
567 |
+
2024-03-28 09:08:34,658 epoch 74 - iter 1/3 - loss 0.24642578 - time (sec): 0.07 - samples/sec: 5595.57 - lr: 0.012500 - momentum: 0.000000
|
568 |
+
2024-03-28 09:08:34,722 epoch 74 - iter 2/3 - loss 0.21810751 - time (sec): 0.13 - samples/sec: 5737.34 - lr: 0.012500 - momentum: 0.000000
|
569 |
+
2024-03-28 09:08:34,747 epoch 74 - iter 3/3 - loss 0.22412623 - time (sec): 0.16 - samples/sec: 4994.73 - lr: 0.012500 - momentum: 0.000000
|
570 |
+
2024-03-28 09:08:34,749 ----------------------------------------------------------------------------------------------------
|
571 |
+
2024-03-28 09:08:34,751 EPOCH 74 done: loss 0.2241 - lr: 0.012500
|
572 |
+
2024-03-28 09:08:34,754 - 2 epochs without improvement
|
573 |
+
2024-03-28 09:08:34,755 ----------------------------------------------------------------------------------------------------
|
574 |
+
2024-03-28 09:08:34,826 epoch 75 - iter 1/3 - loss 0.20324577 - time (sec): 0.07 - samples/sec: 5632.71 - lr: 0.012500 - momentum: 0.000000
|
575 |
+
2024-03-28 09:08:34,891 epoch 75 - iter 2/3 - loss 0.21292139 - time (sec): 0.13 - samples/sec: 5723.80 - lr: 0.012500 - momentum: 0.000000
|
576 |
+
2024-03-28 09:08:34,915 epoch 75 - iter 3/3 - loss 0.20921929 - time (sec): 0.16 - samples/sec: 4991.02 - lr: 0.012500 - momentum: 0.000000
|
577 |
+
2024-03-28 09:08:34,916 ----------------------------------------------------------------------------------------------------
|
578 |
+
2024-03-28 09:08:34,919 EPOCH 75 done: loss 0.2092 - lr: 0.012500
|
579 |
+
2024-03-28 09:08:34,921 - 3 epochs without improvement
|
580 |
+
2024-03-28 09:08:34,923 ----------------------------------------------------------------------------------------------------
|
581 |
+
2024-03-28 09:08:34,996 epoch 76 - iter 1/3 - loss 0.23860086 - time (sec): 0.07 - samples/sec: 5597.94 - lr: 0.012500 - momentum: 0.000000
|
582 |
+
2024-03-28 09:08:35,061 epoch 76 - iter 2/3 - loss 0.22212134 - time (sec): 0.13 - samples/sec: 5727.10 - lr: 0.012500 - momentum: 0.000000
|
583 |
+
2024-03-28 09:08:35,085 epoch 76 - iter 3/3 - loss 0.22672753 - time (sec): 0.16 - samples/sec: 5015.31 - lr: 0.012500 - momentum: 0.000000
|
584 |
+
2024-03-28 09:08:35,086 ----------------------------------------------------------------------------------------------------
|
585 |
+
2024-03-28 09:08:35,088 EPOCH 76 done: loss 0.2267 - lr: 0.012500
|
586 |
+
2024-03-28 09:08:35,090 - 4 epochs without improvement (above 'patience')-> annealing learning_rate to [0.00625]
|
587 |
+
2024-03-28 09:08:35,093 ----------------------------------------------------------------------------------------------------
|
588 |
+
2024-03-28 09:08:35,157 epoch 77 - iter 1/3 - loss 0.20140748 - time (sec): 0.06 - samples/sec: 5931.86 - lr: 0.006250 - momentum: 0.000000
|
589 |
+
2024-03-28 09:08:35,223 epoch 77 - iter 2/3 - loss 0.23543165 - time (sec): 0.13 - samples/sec: 5886.34 - lr: 0.006250 - momentum: 0.000000
|
590 |
+
2024-03-28 09:08:35,245 epoch 77 - iter 3/3 - loss 0.22959387 - time (sec): 0.15 - samples/sec: 5180.90 - lr: 0.006250 - momentum: 0.000000
|
591 |
+
2024-03-28 09:08:35,246 ----------------------------------------------------------------------------------------------------
|
592 |
+
2024-03-28 09:08:35,249 EPOCH 77 done: loss 0.2296 - lr: 0.006250
|
593 |
+
2024-03-28 09:08:35,251 - 1 epochs without improvement
|
594 |
+
2024-03-28 09:08:35,253 ----------------------------------------------------------------------------------------------------
|
595 |
+
2024-03-28 09:08:35,319 epoch 78 - iter 1/3 - loss 0.26190517 - time (sec): 0.06 - samples/sec: 5839.55 - lr: 0.006250 - momentum: 0.000000
|
596 |
+
2024-03-28 09:08:35,385 epoch 78 - iter 2/3 - loss 0.23953494 - time (sec): 0.13 - samples/sec: 5857.85 - lr: 0.006250 - momentum: 0.000000
|
597 |
+
2024-03-28 09:08:35,409 epoch 78 - iter 3/3 - loss 0.23820210 - time (sec): 0.15 - samples/sec: 5083.93 - lr: 0.006250 - momentum: 0.000000
|
598 |
+
2024-03-28 09:08:35,411 ----------------------------------------------------------------------------------------------------
|
599 |
+
2024-03-28 09:08:35,414 EPOCH 78 done: loss 0.2382 - lr: 0.006250
|
600 |
+
2024-03-28 09:08:35,416 - 2 epochs without improvement
|
601 |
+
2024-03-28 09:08:35,418 ----------------------------------------------------------------------------------------------------
|
602 |
+
2024-03-28 09:08:35,488 epoch 79 - iter 1/3 - loss 0.19539345 - time (sec): 0.07 - samples/sec: 5625.49 - lr: 0.006250 - momentum: 0.000000
|
603 |
+
2024-03-28 09:08:35,555 epoch 79 - iter 2/3 - loss 0.20920196 - time (sec): 0.13 - samples/sec: 5661.67 - lr: 0.006250 - momentum: 0.000000
|
604 |
+
2024-03-28 09:08:35,580 epoch 79 - iter 3/3 - loss 0.21356759 - time (sec): 0.16 - samples/sec: 4902.78 - lr: 0.006250 - momentum: 0.000000
|
605 |
+
2024-03-28 09:08:35,581 ----------------------------------------------------------------------------------------------------
|
606 |
+
2024-03-28 09:08:35,584 EPOCH 79 done: loss 0.2136 - lr: 0.006250
|
607 |
+
2024-03-28 09:08:35,587 - 3 epochs without improvement
|
608 |
+
2024-03-28 09:08:35,589 ----------------------------------------------------------------------------------------------------
|
609 |
+
2024-03-28 09:08:35,652 epoch 80 - iter 1/3 - loss 0.22265025 - time (sec): 0.06 - samples/sec: 6036.04 - lr: 0.006250 - momentum: 0.000000
|
610 |
+
2024-03-28 09:08:35,719 epoch 80 - iter 2/3 - loss 0.20324885 - time (sec): 0.13 - samples/sec: 5911.13 - lr: 0.006250 - momentum: 0.000000
|
611 |
+
2024-03-28 09:08:35,744 epoch 80 - iter 3/3 - loss 0.20831160 - time (sec): 0.15 - samples/sec: 5091.36 - lr: 0.006250 - momentum: 0.000000
|
612 |
+
2024-03-28 09:08:35,746 ----------------------------------------------------------------------------------------------------
|
613 |
+
2024-03-28 09:08:35,748 EPOCH 80 done: loss 0.2083 - lr: 0.006250
|
614 |
+
2024-03-28 09:08:35,751 - 4 epochs without improvement (above 'patience')-> annealing learning_rate to [0.003125]
|
615 |
+
2024-03-28 09:08:35,753 ----------------------------------------------------------------------------------------------------
|
616 |
+
2024-03-28 09:08:35,825 epoch 81 - iter 1/3 - loss 0.18628309 - time (sec): 0.07 - samples/sec: 5587.97 - lr: 0.003125 - momentum: 0.000000
|
617 |
+
2024-03-28 09:08:35,889 epoch 81 - iter 2/3 - loss 0.20686248 - time (sec): 0.13 - samples/sec: 5664.59 - lr: 0.003125 - momentum: 0.000000
|
618 |
+
2024-03-28 09:08:35,911 epoch 81 - iter 3/3 - loss 0.20672222 - time (sec): 0.16 - samples/sec: 4994.39 - lr: 0.003125 - momentum: 0.000000
|
619 |
+
2024-03-28 09:08:35,913 ----------------------------------------------------------------------------------------------------
|
620 |
+
2024-03-28 09:08:35,916 EPOCH 81 done: loss 0.2067 - lr: 0.003125
|
621 |
+
2024-03-28 09:08:35,918 - 1 epochs without improvement
|
622 |
+
2024-03-28 09:08:35,920 ----------------------------------------------------------------------------------------------------
|
623 |
+
2024-03-28 09:08:35,992 epoch 82 - iter 1/3 - loss 0.19897849 - time (sec): 0.07 - samples/sec: 5515.18 - lr: 0.003125 - momentum: 0.000000
|
624 |
+
2024-03-28 09:08:36,072 epoch 82 - iter 2/3 - loss 0.20879538 - time (sec): 0.15 - samples/sec: 5088.16 - lr: 0.003125 - momentum: 0.000000
|
625 |
+
2024-03-28 09:08:36,095 epoch 82 - iter 3/3 - loss 0.20445322 - time (sec): 0.17 - samples/sec: 4533.89 - lr: 0.003125 - momentum: 0.000000
|
626 |
+
2024-03-28 09:08:36,097 ----------------------------------------------------------------------------------------------------
|
627 |
+
2024-03-28 09:08:36,099 EPOCH 82 done: loss 0.2045 - lr: 0.003125
|
628 |
+
2024-03-28 09:08:36,102 - 2 epochs without improvement
|
629 |
+
2024-03-28 09:08:36,104 ----------------------------------------------------------------------------------------------------
|
630 |
+
2024-03-28 09:08:36,169 epoch 83 - iter 1/3 - loss 0.17155356 - time (sec): 0.06 - samples/sec: 6148.63 - lr: 0.003125 - momentum: 0.000000
|
631 |
+
2024-03-28 09:08:36,234 epoch 83 - iter 2/3 - loss 0.19129354 - time (sec): 0.13 - samples/sec: 5926.47 - lr: 0.003125 - momentum: 0.000000
|
632 |
+
2024-03-28 09:08:36,258 epoch 83 - iter 3/3 - loss 0.19397805 - time (sec): 0.15 - samples/sec: 5158.06 - lr: 0.003125 - momentum: 0.000000
|
633 |
+
2024-03-28 09:08:36,259 ----------------------------------------------------------------------------------------------------
|
634 |
+
2024-03-28 09:08:36,262 EPOCH 83 done: loss 0.1940 - lr: 0.003125
|
635 |
+
2024-03-28 09:08:36,264 - 0 epochs without improvement
|
636 |
+
2024-03-28 09:08:36,267 ----------------------------------------------------------------------------------------------------
|
637 |
+
2024-03-28 09:08:36,335 epoch 84 - iter 1/3 - loss 0.19546600 - time (sec): 0.07 - samples/sec: 5642.23 - lr: 0.003125 - momentum: 0.000000
|
638 |
+
2024-03-28 09:08:36,403 epoch 84 - iter 2/3 - loss 0.20660319 - time (sec): 0.13 - samples/sec: 5619.65 - lr: 0.003125 - momentum: 0.000000
|
639 |
+
2024-03-28 09:08:36,430 epoch 84 - iter 3/3 - loss 0.20619125 - time (sec): 0.16 - samples/sec: 4857.78 - lr: 0.003125 - momentum: 0.000000
|
640 |
+
2024-03-28 09:08:36,432 ----------------------------------------------------------------------------------------------------
|
641 |
+
2024-03-28 09:08:36,434 EPOCH 84 done: loss 0.2062 - lr: 0.003125
|
642 |
+
2024-03-28 09:08:36,436 - 1 epochs without improvement
|
643 |
+
2024-03-28 09:08:36,438 ----------------------------------------------------------------------------------------------------
|
644 |
+
2024-03-28 09:08:36,505 epoch 85 - iter 1/3 - loss 0.21508853 - time (sec): 0.06 - samples/sec: 5964.38 - lr: 0.003125 - momentum: 0.000000
|
645 |
+
2024-03-28 09:08:36,575 epoch 85 - iter 2/3 - loss 0.20740067 - time (sec): 0.13 - samples/sec: 5656.74 - lr: 0.003125 - momentum: 0.000000
|
646 |
+
2024-03-28 09:08:36,598 epoch 85 - iter 3/3 - loss 0.20411952 - time (sec): 0.16 - samples/sec: 4966.24 - lr: 0.003125 - momentum: 0.000000
|
647 |
+
2024-03-28 09:08:36,599 ----------------------------------------------------------------------------------------------------
|
648 |
+
2024-03-28 09:08:36,602 EPOCH 85 done: loss 0.2041 - lr: 0.003125
|
649 |
+
2024-03-28 09:08:36,604 - 2 epochs without improvement
|
650 |
+
2024-03-28 09:08:36,606 ----------------------------------------------------------------------------------------------------
|
651 |
+
2024-03-28 09:08:36,673 epoch 86 - iter 1/3 - loss 0.23413151 - time (sec): 0.07 - samples/sec: 5765.88 - lr: 0.003125 - momentum: 0.000000
|
652 |
+
2024-03-28 09:08:36,738 epoch 86 - iter 2/3 - loss 0.21575944 - time (sec): 0.13 - samples/sec: 5775.19 - lr: 0.003125 - momentum: 0.000000
|
653 |
+
2024-03-28 09:08:36,765 epoch 86 - iter 3/3 - loss 0.22781102 - time (sec): 0.16 - samples/sec: 4949.48 - lr: 0.003125 - momentum: 0.000000
|
654 |
+
2024-03-28 09:08:36,769 ----------------------------------------------------------------------------------------------------
|
655 |
+
2024-03-28 09:08:36,771 EPOCH 86 done: loss 0.2278 - lr: 0.003125
|
656 |
+
2024-03-28 09:08:36,773 - 3 epochs without improvement
|
657 |
+
2024-03-28 09:08:36,775 ----------------------------------------------------------------------------------------------------
|
658 |
+
2024-03-28 09:08:36,843 epoch 87 - iter 1/3 - loss 0.19966387 - time (sec): 0.07 - samples/sec: 5803.18 - lr: 0.003125 - momentum: 0.000000
|
659 |
+
2024-03-28 09:08:36,907 epoch 87 - iter 2/3 - loss 0.19670426 - time (sec): 0.13 - samples/sec: 5831.49 - lr: 0.003125 - momentum: 0.000000
|
660 |
+
2024-03-28 09:08:36,934 epoch 87 - iter 3/3 - loss 0.19452721 - time (sec): 0.16 - samples/sec: 4979.61 - lr: 0.003125 - momentum: 0.000000
|
661 |
+
2024-03-28 09:08:36,936 ----------------------------------------------------------------------------------------------------
|
662 |
+
2024-03-28 09:08:36,938 EPOCH 87 done: loss 0.1945 - lr: 0.003125
|
663 |
+
2024-03-28 09:08:36,940 - 4 epochs without improvement (above 'patience')-> annealing learning_rate to [0.0015625]
|
664 |
+
2024-03-28 09:08:36,942 ----------------------------------------------------------------------------------------------------
|
665 |
+
2024-03-28 09:08:37,016 epoch 88 - iter 1/3 - loss 0.22008498 - time (sec): 0.07 - samples/sec: 5298.35 - lr: 0.001563 - momentum: 0.000000
|
666 |
+
2024-03-28 09:08:37,083 epoch 88 - iter 2/3 - loss 0.19665170 - time (sec): 0.14 - samples/sec: 5437.93 - lr: 0.001563 - momentum: 0.000000
|
667 |
+
2024-03-28 09:08:37,108 epoch 88 - iter 3/3 - loss 0.20012108 - time (sec): 0.16 - samples/sec: 4768.16 - lr: 0.001563 - momentum: 0.000000
|
668 |
+
2024-03-28 09:08:37,109 ----------------------------------------------------------------------------------------------------
|
669 |
+
2024-03-28 09:08:37,112 EPOCH 88 done: loss 0.2001 - lr: 0.001563
|
670 |
+
2024-03-28 09:08:37,114 - 1 epochs without improvement
|
671 |
+
2024-03-28 09:08:37,117 ----------------------------------------------------------------------------------------------------
|
672 |
+
2024-03-28 09:08:37,189 epoch 89 - iter 1/3 - loss 0.18575605 - time (sec): 0.07 - samples/sec: 5497.97 - lr: 0.001563 - momentum: 0.000000
|
673 |
+
2024-03-28 09:08:37,256 epoch 89 - iter 2/3 - loss 0.18895481 - time (sec): 0.14 - samples/sec: 5476.09 - lr: 0.001563 - momentum: 0.000000
|
674 |
+
2024-03-28 09:08:37,281 epoch 89 - iter 3/3 - loss 0.18614399 - time (sec): 0.16 - samples/sec: 4788.19 - lr: 0.001563 - momentum: 0.000000
|
675 |
+
2024-03-28 09:08:37,283 ----------------------------------------------------------------------------------------------------
|
676 |
+
2024-03-28 09:08:37,285 EPOCH 89 done: loss 0.1861 - lr: 0.001563
|
677 |
+
2024-03-28 09:08:37,287 - 0 epochs without improvement
|
678 |
+
2024-03-28 09:08:37,290 ----------------------------------------------------------------------------------------------------
|
679 |
+
2024-03-28 09:08:37,360 epoch 90 - iter 1/3 - loss 0.20966875 - time (sec): 0.07 - samples/sec: 5526.63 - lr: 0.001563 - momentum: 0.000000
|
680 |
+
2024-03-28 09:08:37,429 epoch 90 - iter 2/3 - loss 0.18502192 - time (sec): 0.14 - samples/sec: 5561.81 - lr: 0.001563 - momentum: 0.000000
|
681 |
+
2024-03-28 09:08:37,454 epoch 90 - iter 3/3 - loss 0.18437769 - time (sec): 0.16 - samples/sec: 4814.59 - lr: 0.001563 - momentum: 0.000000
|
682 |
+
2024-03-28 09:08:37,456 ----------------------------------------------------------------------------------------------------
|
683 |
+
2024-03-28 09:08:37,459 EPOCH 90 done: loss 0.1844 - lr: 0.001563
|
684 |
+
2024-03-28 09:08:37,461 - 0 epochs without improvement
|
685 |
+
2024-03-28 09:08:37,463 ----------------------------------------------------------------------------------------------------
|
686 |
+
2024-03-28 09:08:37,542 epoch 91 - iter 1/3 - loss 0.21700736 - time (sec): 0.08 - samples/sec: 5196.77 - lr: 0.001563 - momentum: 0.000000
|
687 |
+
2024-03-28 09:08:37,608 epoch 91 - iter 2/3 - loss 0.21150135 - time (sec): 0.14 - samples/sec: 5288.80 - lr: 0.001563 - momentum: 0.000000
|
688 |
+
2024-03-28 09:08:37,633 epoch 91 - iter 3/3 - loss 0.21616639 - time (sec): 0.17 - samples/sec: 4642.85 - lr: 0.001563 - momentum: 0.000000
|
689 |
+
2024-03-28 09:08:37,634 ----------------------------------------------------------------------------------------------------
|
690 |
+
2024-03-28 09:08:37,637 EPOCH 91 done: loss 0.2162 - lr: 0.001563
|
691 |
+
2024-03-28 09:08:37,640 - 1 epochs without improvement
|
692 |
+
2024-03-28 09:08:37,642 ----------------------------------------------------------------------------------------------------
|
693 |
+
2024-03-28 09:08:37,712 epoch 92 - iter 1/3 - loss 0.17263027 - time (sec): 0.07 - samples/sec: 5502.15 - lr: 0.001563 - momentum: 0.000000
|
694 |
+
2024-03-28 09:08:37,779 epoch 92 - iter 2/3 - loss 0.20051331 - time (sec): 0.13 - samples/sec: 5610.57 - lr: 0.001563 - momentum: 0.000000
|
695 |
+
2024-03-28 09:08:37,804 epoch 92 - iter 3/3 - loss 0.19621649 - time (sec): 0.16 - samples/sec: 4883.81 - lr: 0.001563 - momentum: 0.000000
|
696 |
+
2024-03-28 09:08:37,806 ----------------------------------------------------------------------------------------------------
|
697 |
+
2024-03-28 09:08:37,808 EPOCH 92 done: loss 0.1962 - lr: 0.001563
|
698 |
+
2024-03-28 09:08:37,810 - 2 epochs without improvement
|
699 |
+
2024-03-28 09:08:37,812 ----------------------------------------------------------------------------------------------------
|
700 |
+
2024-03-28 09:08:37,876 epoch 93 - iter 1/3 - loss 0.16124828 - time (sec): 0.06 - samples/sec: 5986.96 - lr: 0.001563 - momentum: 0.000000
|
701 |
+
2024-03-28 09:08:37,940 epoch 93 - iter 2/3 - loss 0.20056266 - time (sec): 0.13 - samples/sec: 5938.83 - lr: 0.001563 - momentum: 0.000000
|
702 |
+
2024-03-28 09:08:37,967 epoch 93 - iter 3/3 - loss 0.19693890 - time (sec): 0.15 - samples/sec: 5078.24 - lr: 0.001563 - momentum: 0.000000
|
703 |
+
2024-03-28 09:08:37,969 ----------------------------------------------------------------------------------------------------
|
704 |
+
2024-03-28 09:08:37,971 EPOCH 93 done: loss 0.1969 - lr: 0.001563
|
705 |
+
2024-03-28 09:08:37,974 - 3 epochs without improvement
|
706 |
+
2024-03-28 09:08:37,975 ----------------------------------------------------------------------------------------------------
|
707 |
+
2024-03-28 09:08:38,049 epoch 94 - iter 1/3 - loss 0.19580606 - time (sec): 0.07 - samples/sec: 5265.94 - lr: 0.001563 - momentum: 0.000000
|
708 |
+
2024-03-28 09:08:38,114 epoch 94 - iter 2/3 - loss 0.20014706 - time (sec): 0.14 - samples/sec: 5594.41 - lr: 0.001563 - momentum: 0.000000
|
709 |
+
2024-03-28 09:08:38,144 epoch 94 - iter 3/3 - loss 0.19673995 - time (sec): 0.17 - samples/sec: 4713.15 - lr: 0.001563 - momentum: 0.000000
|
710 |
+
2024-03-28 09:08:38,145 ----------------------------------------------------------------------------------------------------
|
711 |
+
2024-03-28 09:08:38,148 EPOCH 94 done: loss 0.1967 - lr: 0.001563
|
712 |
+
2024-03-28 09:08:38,150 - 4 epochs without improvement (above 'patience')-> annealing learning_rate to [0.00078125]
|
713 |
+
2024-03-28 09:08:38,152 ----------------------------------------------------------------------------------------------------
|
714 |
+
2024-03-28 09:08:38,220 epoch 95 - iter 1/3 - loss 0.21017605 - time (sec): 0.07 - samples/sec: 5624.92 - lr: 0.000781 - momentum: 0.000000
|
715 |
+
2024-03-28 09:08:38,289 epoch 95 - iter 2/3 - loss 0.19381217 - time (sec): 0.14 - samples/sec: 5552.42 - lr: 0.000781 - momentum: 0.000000
|
716 |
+
2024-03-28 09:08:38,317 epoch 95 - iter 3/3 - loss 0.19578398 - time (sec): 0.16 - samples/sec: 4797.42 - lr: 0.000781 - momentum: 0.000000
|
717 |
+
2024-03-28 09:08:38,318 ----------------------------------------------------------------------------------------------------
|
718 |
+
2024-03-28 09:08:38,321 EPOCH 95 done: loss 0.1958 - lr: 0.000781
|
719 |
+
2024-03-28 09:08:38,323 - 1 epochs without improvement
|
720 |
+
2024-03-28 09:08:38,325 ----------------------------------------------------------------------------------------------------
|
721 |
+
2024-03-28 09:08:38,391 epoch 96 - iter 1/3 - loss 0.15655139 - time (sec): 0.06 - samples/sec: 5790.11 - lr: 0.000781 - momentum: 0.000000
|
722 |
+
2024-03-28 09:08:38,461 epoch 96 - iter 2/3 - loss 0.19074659 - time (sec): 0.13 - samples/sec: 5643.29 - lr: 0.000781 - momentum: 0.000000
|
723 |
+
2024-03-28 09:08:38,486 epoch 96 - iter 3/3 - loss 0.18613870 - time (sec): 0.16 - samples/sec: 4899.18 - lr: 0.000781 - momentum: 0.000000
|
724 |
+
2024-03-28 09:08:38,487 ----------------------------------------------------------------------------------------------------
|
725 |
+
2024-03-28 09:08:38,490 EPOCH 96 done: loss 0.1861 - lr: 0.000781
|
726 |
+
2024-03-28 09:08:38,493 - 2 epochs without improvement
|
727 |
+
2024-03-28 09:08:38,495 ----------------------------------------------------------------------------------------------------
|
728 |
+
2024-03-28 09:08:38,560 epoch 97 - iter 1/3 - loss 0.18081108 - time (sec): 0.06 - samples/sec: 5971.45 - lr: 0.000781 - momentum: 0.000000
|
729 |
+
2024-03-28 09:08:38,628 epoch 97 - iter 2/3 - loss 0.18019803 - time (sec): 0.13 - samples/sec: 5857.20 - lr: 0.000781 - momentum: 0.000000
|
730 |
+
2024-03-28 09:08:38,654 epoch 97 - iter 3/3 - loss 0.17897194 - time (sec): 0.16 - samples/sec: 5010.46 - lr: 0.000781 - momentum: 0.000000
|
731 |
+
2024-03-28 09:08:38,655 ----------------------------------------------------------------------------------------------------
|
732 |
+
2024-03-28 09:08:38,658 EPOCH 97 done: loss 0.1790 - lr: 0.000781
|
733 |
+
2024-03-28 09:08:38,660 - 0 epochs without improvement
|
734 |
+
2024-03-28 09:08:38,663 ----------------------------------------------------------------------------------------------------
|
735 |
+
2024-03-28 09:08:38,729 epoch 98 - iter 1/3 - loss 0.19285375 - time (sec): 0.06 - samples/sec: 5864.54 - lr: 0.000781 - momentum: 0.000000
|
736 |
+
2024-03-28 09:08:38,796 epoch 98 - iter 2/3 - loss 0.18586519 - time (sec): 0.13 - samples/sec: 5727.76 - lr: 0.000781 - momentum: 0.000000
|
737 |
+
2024-03-28 09:08:38,821 epoch 98 - iter 3/3 - loss 0.18403817 - time (sec): 0.16 - samples/sec: 4977.22 - lr: 0.000781 - momentum: 0.000000
|
738 |
+
2024-03-28 09:08:38,823 ----------------------------------------------------------------------------------------------------
|
739 |
+
2024-03-28 09:08:38,825 EPOCH 98 done: loss 0.1840 - lr: 0.000781
|
740 |
+
2024-03-28 09:08:38,828 - 1 epochs without improvement
|
741 |
+
2024-03-28 09:08:38,830 ----------------------------------------------------------------------------------------------------
|
742 |
+
2024-03-28 09:08:38,920 epoch 99 - iter 1/3 - loss 0.22237257 - time (sec): 0.09 - samples/sec: 4446.36 - lr: 0.000781 - momentum: 0.000000
|
743 |
+
2024-03-28 09:08:39,009 epoch 99 - iter 2/3 - loss 0.20208282 - time (sec): 0.18 - samples/sec: 4306.20 - lr: 0.000781 - momentum: 0.000000
|
744 |
+
2024-03-28 09:08:39,044 epoch 99 - iter 3/3 - loss 0.20092824 - time (sec): 0.21 - samples/sec: 3689.11 - lr: 0.000781 - momentum: 0.000000
|
745 |
+
2024-03-28 09:08:39,046 ----------------------------------------------------------------------------------------------------
|
746 |
+
2024-03-28 09:08:39,048 EPOCH 99 done: loss 0.2009 - lr: 0.000781
|
747 |
+
2024-03-28 09:08:39,050 - 2 epochs without improvement
|
748 |
+
2024-03-28 09:08:39,052 ----------------------------------------------------------------------------------------------------
|
749 |
+
2024-03-28 09:08:39,138 epoch 100 - iter 1/3 - loss 0.19105241 - time (sec): 0.08 - samples/sec: 4345.36 - lr: 0.000781 - momentum: 0.000000
|
750 |
+
2024-03-28 09:08:39,232 epoch 100 - iter 2/3 - loss 0.19192969 - time (sec): 0.18 - samples/sec: 4216.99 - lr: 0.000781 - momentum: 0.000000
|
751 |
+
2024-03-28 09:08:39,262 epoch 100 - iter 3/3 - loss 0.18671563 - time (sec): 0.21 - samples/sec: 3743.15 - lr: 0.000781 - momentum: 0.000000
|
752 |
+
2024-03-28 09:08:39,264 ----------------------------------------------------------------------------------------------------
|
753 |
+
2024-03-28 09:08:39,266 EPOCH 100 done: loss 0.1867 - lr: 0.000781
|
754 |
+
2024-03-28 09:08:39,268 - 3 epochs without improvement
|
755 |
+
2024-03-28 09:08:39,270 ----------------------------------------------------------------------------------------------------
|
756 |
+
2024-03-28 09:08:39,363 epoch 101 - iter 1/3 - loss 0.23572141 - time (sec): 0.09 - samples/sec: 4301.97 - lr: 0.000781 - momentum: 0.000000
|
757 |
+
2024-03-28 09:08:39,448 epoch 101 - iter 2/3 - loss 0.21389694 - time (sec): 0.17 - samples/sec: 4428.51 - lr: 0.000781 - momentum: 0.000000
|
758 |
+
2024-03-28 09:08:39,479 epoch 101 - iter 3/3 - loss 0.21106680 - time (sec): 0.20 - samples/sec: 3867.97 - lr: 0.000781 - momentum: 0.000000
|
759 |
+
2024-03-28 09:08:39,483 ----------------------------------------------------------------------------------------------------
|
760 |
+
2024-03-28 09:08:39,486 EPOCH 101 done: loss 0.2111 - lr: 0.000781
|
761 |
+
2024-03-28 09:08:39,490 - 4 epochs without improvement (above 'patience')-> annealing learning_rate to [0.000390625]
|
762 |
+
2024-03-28 09:08:39,495 ----------------------------------------------------------------------------------------------------
|
763 |
+
2024-03-28 09:08:39,578 epoch 102 - iter 1/3 - loss 0.20411731 - time (sec): 0.08 - samples/sec: 4631.87 - lr: 0.000391 - momentum: 0.000000
|
764 |
+
2024-03-28 09:08:39,671 epoch 102 - iter 2/3 - loss 0.17361511 - time (sec): 0.17 - samples/sec: 4339.71 - lr: 0.000391 - momentum: 0.000000
|
765 |
+
2024-03-28 09:08:39,700 epoch 102 - iter 3/3 - loss 0.17970168 - time (sec): 0.20 - samples/sec: 3836.73 - lr: 0.000391 - momentum: 0.000000
|
766 |
+
2024-03-28 09:08:39,702 ----------------------------------------------------------------------------------------------------
|
767 |
+
2024-03-28 09:08:39,705 EPOCH 102 done: loss 0.1797 - lr: 0.000391
|
768 |
+
2024-03-28 09:08:39,708 - 1 epochs without improvement
|
769 |
+
2024-03-28 09:08:39,711 ----------------------------------------------------------------------------------------------------
|
770 |
+
2024-03-28 09:08:39,799 epoch 103 - iter 1/3 - loss 0.17368401 - time (sec): 0.09 - samples/sec: 4284.76 - lr: 0.000391 - momentum: 0.000000
|
771 |
+
2024-03-28 09:08:39,884 epoch 103 - iter 2/3 - loss 0.22948218 - time (sec): 0.17 - samples/sec: 4427.71 - lr: 0.000391 - momentum: 0.000000
|
772 |
+
2024-03-28 09:08:39,911 epoch 103 - iter 3/3 - loss 0.23261170 - time (sec): 0.20 - samples/sec: 3924.92 - lr: 0.000391 - momentum: 0.000000
|
773 |
+
2024-03-28 09:08:39,913 ----------------------------------------------------------------------------------------------------
|
774 |
+
2024-03-28 09:08:39,915 EPOCH 103 done: loss 0.2326 - lr: 0.000391
|
775 |
+
2024-03-28 09:08:39,918 - 2 epochs without improvement
|
776 |
+
2024-03-28 09:08:39,920 ----------------------------------------------------------------------------------------------------
|
777 |
+
2024-03-28 09:08:40,002 epoch 104 - iter 1/3 - loss 0.18409026 - time (sec): 0.08 - samples/sec: 4455.73 - lr: 0.000391 - momentum: 0.000000
|
778 |
+
2024-03-28 09:08:40,092 epoch 104 - iter 2/3 - loss 0.21870441 - time (sec): 0.17 - samples/sec: 4451.58 - lr: 0.000391 - momentum: 0.000000
|
779 |
+
2024-03-28 09:08:40,127 epoch 104 - iter 3/3 - loss 0.21383352 - time (sec): 0.20 - samples/sec: 3802.98 - lr: 0.000391 - momentum: 0.000000
|
780 |
+
2024-03-28 09:08:40,130 ----------------------------------------------------------------------------------------------------
|
781 |
+
2024-03-28 09:08:40,131 EPOCH 104 done: loss 0.2138 - lr: 0.000391
|
782 |
+
2024-03-28 09:08:40,133 - 3 epochs without improvement
|
783 |
+
2024-03-28 09:08:40,134 ----------------------------------------------------------------------------------------------------
|
784 |
+
2024-03-28 09:08:40,227 epoch 105 - iter 1/3 - loss 0.20639474 - time (sec): 0.09 - samples/sec: 4308.96 - lr: 0.000391 - momentum: 0.000000
|
785 |
+
2024-03-28 09:08:40,329 epoch 105 - iter 2/3 - loss 0.21218268 - time (sec): 0.19 - samples/sec: 3934.47 - lr: 0.000391 - momentum: 0.000000
|
786 |
+
2024-03-28 09:08:40,357 epoch 105 - iter 3/3 - loss 0.21193148 - time (sec): 0.22 - samples/sec: 3521.54 - lr: 0.000391 - momentum: 0.000000
|
787 |
+
2024-03-28 09:08:40,360 ----------------------------------------------------------------------------------------------------
|
788 |
+
2024-03-28 09:08:40,362 EPOCH 105 done: loss 0.2119 - lr: 0.000391
|
789 |
+
2024-03-28 09:08:40,366 - 4 epochs without improvement (above 'patience')-> annealing learning_rate to [0.0001953125]
|
790 |
+
2024-03-28 09:08:40,368 ----------------------------------------------------------------------------------------------------
|
791 |
+
2024-03-28 09:08:40,468 epoch 106 - iter 1/3 - loss 0.16320036 - time (sec): 0.10 - samples/sec: 3747.98 - lr: 0.000195 - momentum: 0.000000
|
792 |
+
2024-03-28 09:08:40,565 epoch 106 - iter 2/3 - loss 0.17305550 - time (sec): 0.19 - samples/sec: 3911.81 - lr: 0.000195 - momentum: 0.000000
|
793 |
+
2024-03-28 09:08:40,593 epoch 106 - iter 3/3 - loss 0.17119106 - time (sec): 0.22 - samples/sec: 3498.36 - lr: 0.000195 - momentum: 0.000000
|
794 |
+
2024-03-28 09:08:40,595 ----------------------------------------------------------------------------------------------------
|
795 |
+
2024-03-28 09:08:40,597 EPOCH 106 done: loss 0.1712 - lr: 0.000195
|
796 |
+
2024-03-28 09:08:40,602 - 0 epochs without improvement
|
797 |
+
2024-03-28 09:08:40,606 ----------------------------------------------------------------------------------------------------
|
798 |
+
2024-03-28 09:08:40,713 epoch 107 - iter 1/3 - loss 0.20166751 - time (sec): 0.10 - samples/sec: 3547.84 - lr: 0.000195 - momentum: 0.000000
|
799 |
+
2024-03-28 09:08:40,807 epoch 107 - iter 2/3 - loss 0.17208012 - time (sec): 0.20 - samples/sec: 3844.10 - lr: 0.000195 - momentum: 0.000000
|
800 |
+
2024-03-28 09:08:40,844 epoch 107 - iter 3/3 - loss 0.17909875 - time (sec): 0.23 - samples/sec: 3328.13 - lr: 0.000195 - momentum: 0.000000
|
801 |
+
2024-03-28 09:08:40,848 ----------------------------------------------------------------------------------------------------
|
802 |
+
2024-03-28 09:08:40,851 EPOCH 107 done: loss 0.1791 - lr: 0.000195
|
803 |
+
2024-03-28 09:08:40,855 - 1 epochs without improvement
|
804 |
+
2024-03-28 09:08:40,857 ----------------------------------------------------------------------------------------------------
|
805 |
+
2024-03-28 09:08:40,961 epoch 108 - iter 1/3 - loss 0.19488302 - time (sec): 0.10 - samples/sec: 3733.82 - lr: 0.000195 - momentum: 0.000000
|
806 |
+
2024-03-28 09:08:41,054 epoch 108 - iter 2/3 - loss 0.17380854 - time (sec): 0.20 - samples/sec: 3831.73 - lr: 0.000195 - momentum: 0.000000
|
807 |
+
2024-03-28 09:08:41,096 epoch 108 - iter 3/3 - loss 0.17624595 - time (sec): 0.24 - samples/sec: 3278.64 - lr: 0.000195 - momentum: 0.000000
|
808 |
+
2024-03-28 09:08:41,101 ----------------------------------------------------------------------------------------------------
|
809 |
+
2024-03-28 09:08:41,102 EPOCH 108 done: loss 0.1762 - lr: 0.000195
|
810 |
+
2024-03-28 09:08:41,104 - 2 epochs without improvement
|
811 |
+
2024-03-28 09:08:41,106 ----------------------------------------------------------------------------------------------------
|
812 |
+
2024-03-28 09:08:41,217 epoch 109 - iter 1/3 - loss 0.21638976 - time (sec): 0.11 - samples/sec: 3421.91 - lr: 0.000195 - momentum: 0.000000
|
813 |
+
2024-03-28 09:08:41,289 epoch 109 - iter 2/3 - loss 0.20551143 - time (sec): 0.18 - samples/sec: 4150.51 - lr: 0.000195 - momentum: 0.000000
|
814 |
+
2024-03-28 09:08:41,318 epoch 109 - iter 3/3 - loss 0.21160093 - time (sec): 0.21 - samples/sec: 3709.13 - lr: 0.000195 - momentum: 0.000000
|
815 |
+
2024-03-28 09:08:41,319 ----------------------------------------------------------------------------------------------------
|
816 |
+
2024-03-28 09:08:41,322 EPOCH 109 done: loss 0.2116 - lr: 0.000195
|
817 |
+
2024-03-28 09:08:41,325 - 3 epochs without improvement
|
818 |
+
2024-03-28 09:08:41,327 ----------------------------------------------------------------------------------------------------
|
819 |
+
2024-03-28 09:08:41,398 epoch 110 - iter 1/3 - loss 0.19369786 - time (sec): 0.07 - samples/sec: 5551.41 - lr: 0.000195 - momentum: 0.000000
|
820 |
+
2024-03-28 09:08:41,471 epoch 110 - iter 2/3 - loss 0.19350566 - time (sec): 0.14 - samples/sec: 5283.12 - lr: 0.000195 - momentum: 0.000000
|
821 |
+
2024-03-28 09:08:41,501 epoch 110 - iter 3/3 - loss 0.19654441 - time (sec): 0.17 - samples/sec: 4532.03 - lr: 0.000195 - momentum: 0.000000
|
822 |
+
2024-03-28 09:08:41,503 ----------------------------------------------------------------------------------------------------
|
823 |
+
2024-03-28 09:08:41,506 EPOCH 110 done: loss 0.1965 - lr: 0.000195
|
824 |
+
2024-03-28 09:08:41,509 - 4 epochs without improvement (above 'patience')-> annealing learning_rate to [9.765625e-05]
|
825 |
+
2024-03-28 09:08:41,512 ----------------------------------------------------------------------------------------------------
|
826 |
+
2024-03-28 09:08:41,517 learning rate too small - quitting training!
|
827 |
+
2024-03-28 09:08:41,519 ----------------------------------------------------------------------------------------------------
|
828 |
+
2024-03-28 09:08:41,520 Saving model ...
|
829 |
+
2024-03-28 09:08:43,132 Done.
|
830 |
+
2024-03-28 09:08:43,136 ----------------------------------------------------------------------------------------------------
|
831 |
+
2024-03-28 09:08:43,140 Testing using last state of model ...
|
832 |
+
2024-03-28 09:08:43,249
|
833 |
+
Results:
|
834 |
+
- F-score (micro) 0.9524
|
835 |
+
- F-score (macro) 0.9333
|
836 |
+
- Accuracy 0.9091
|
837 |
+
|
838 |
+
By class:
|
839 |
+
precision recall f1-score support
|
840 |
+
|
841 |
+
NAME 1.0000 1.0000 1.0000 3
|
842 |
+
GCNUMBER 1.0000 1.0000 1.0000 3
|
843 |
+
LOCATION 1.0000 1.0000 1.0000 2
|
844 |
+
ORG 1.0000 0.5000 0.6667 2
|
845 |
+
COUNTRY 1.0000 1.0000 1.0000 1
|
846 |
+
|
847 |
+
micro avg 1.0000 0.9091 0.9524 11
|
848 |
+
macro avg 1.0000 0.9000 0.9333 11
|
849 |
+
weighted avg 1.0000 0.9091 0.9394 11
|
850 |
+
|
851 |
+
2024-03-28 09:08:43,252 ----------------------------------------------------------------------------------------------------
|