File size: 18,224 Bytes
add457a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 |
from types import SimpleNamespace
import torch
try:
# from torch.nn import BatchNorm2d as SyncBatchNorm
from torch.nn import SyncBatchNorm
except ImportError:
from torch.nn import BatchNorm2d as SyncBatchNorm
from torch import nn
from torch.nn import functional as F
from .conv import LinearBlock, Conv2dBlock, HyperConv2d, PartialConv2dBlock
from .misc import PartialSequential
import sync_batchnorm
class AdaptiveNorm(nn.Module):
r"""Adaptive normalization layer. The layer first normalizes the input, then
performs an affine transformation using parameters computed from the
conditional inputs.
Args:
num_features (int): Number of channels in the input tensor.
cond_dims (int): Number of channels in the conditional inputs.
weight_norm_type (str): Type of weight normalization.
``'none'``, ``'spectral'``, ``'weight'``, or ``'weight_demod'``.
projection (bool): If ``True``, project the conditional input to gamma
and beta using a fully connected layer, otherwise directly use
the conditional input as gamma and beta.
separate_projection (bool): If ``True``, we will use two different
layers for gamma and beta. Otherwise, we will use one layer. It
matters only if you apply any weight norms to this layer.
input_dim (int): Number of dimensions of the input tensor.
activation_norm_type (str):
Type of activation normalization.
``'none'``, ``'instance'``, ``'batch'``, ``'sync_batch'``,
``'layer'``, ``'layer_2d'``, ``'group'``, ``'adaptive'``,
``'spatially_adaptive'`` or ``'hyper_spatially_adaptive'``.
activation_norm_params (obj, optional, default=None):
Parameters of activation normalization.
If not ``None``, ``activation_norm_params.__dict__`` will be used as
keyword arguments when initializing activation normalization.
"""
def __init__(self, num_features, cond_dims, weight_norm_type='',
projection=True,
separate_projection=False,
input_dim=2,
activation_norm_type='instance',
activation_norm_params=None):
super().__init__()
self.projection = projection
self.separate_projection = separate_projection
if activation_norm_params is None:
activation_norm_params = SimpleNamespace(affine=False)
self.norm = get_activation_norm_layer(num_features,
activation_norm_type,
input_dim,
**vars(activation_norm_params))
if self.projection:
if self.separate_projection:
self.fc_gamma = \
LinearBlock(cond_dims, num_features,
weight_norm_type=weight_norm_type)
self.fc_beta = \
LinearBlock(cond_dims, num_features,
weight_norm_type=weight_norm_type)
else:
self.fc = LinearBlock(cond_dims, num_features * 2,
weight_norm_type=weight_norm_type)
self.conditional = True
def forward(self, x, y, **kwargs):
r"""Adaptive Normalization forward.
Args:
x (N x C1 x * tensor): Input tensor.
y (N x C2 tensor): Conditional information.
Returns:
out (N x C1 x * tensor): Output tensor.
"""
if self.projection:
if self.separate_projection:
gamma = self.fc_gamma(y)
beta = self.fc_beta(y)
for _ in range(x.dim() - gamma.dim()):
gamma = gamma.unsqueeze(-1)
beta = beta.unsqueeze(-1)
else:
y = self.fc(y)
for _ in range(x.dim() - y.dim()):
y = y.unsqueeze(-1)
gamma, beta = y.chunk(2, 1)
else:
for _ in range(x.dim() - y.dim()):
y = y.unsqueeze(-1)
gamma, beta = y.chunk(2, 1)
x = self.norm(x) if self.norm is not None else x
out = x * (1 + gamma) + beta
return out
class SpatiallyAdaptiveNorm(nn.Module):
r"""Spatially Adaptive Normalization (SPADE) initialization.
Args:
num_features (int) : Number of channels in the input tensor.
cond_dims (int or list of int) : List of numbers of channels
in the input.
num_filters (int): Number of filters in SPADE.
kernel_size (int): Kernel size of the convolutional filters in
the SPADE layer.
weight_norm_type (str): Type of weight normalization.
``'none'``, ``'spectral'``, or ``'weight'``.
separate_projection (bool): If ``True``, we will use two different
layers for gamma and beta. Otherwise, we will use one layer. It
matters only if you apply any weight norms to this layer.
activation_norm_type (str):
Type of activation normalization.
``'none'``, ``'instance'``, ``'batch'``, ``'sync_batch'``,
``'layer'``, ``'layer_2d'``, ``'group'``.
activation_norm_params (obj, optional, default=None):
Parameters of activation normalization.
If not ``None``, ``activation_norm_params.__dict__`` will be used as
keyword arguments when initializing activation normalization.
"""
def __init__(self,
num_features,
cond_dims,
num_filters=128,
kernel_size=3,
weight_norm_type='',
separate_projection=False,
activation_norm_type='sync_batch',
activation_norm_params=None,
partial=False):
super().__init__()
if activation_norm_params is None:
activation_norm_params = SimpleNamespace(affine=False)
padding = kernel_size // 2
self.separate_projection = separate_projection
self.mlps = nn.ModuleList()
self.gammas = nn.ModuleList()
self.betas = nn.ModuleList()
# Make cond_dims a list.
if type(cond_dims) != list:
cond_dims = [cond_dims]
# Make num_filters a list.
if not isinstance(num_filters, list):
num_filters = [num_filters] * len(cond_dims)
else:
assert len(num_filters) >= len(cond_dims)
# Make partial a list.
if not isinstance(partial, list):
partial = [partial] * len(cond_dims)
else:
assert len(partial) >= len(cond_dims)
for i, cond_dim in enumerate(cond_dims):
mlp = []
conv_block = PartialConv2dBlock if partial[i] else Conv2dBlock
sequential = PartialSequential if partial[i] else nn.Sequential
if num_filters[i] > 0:
mlp += [conv_block(cond_dim,
num_filters[i],
kernel_size,
padding=padding,
weight_norm_type=weight_norm_type,
nonlinearity='relu')]
mlp_ch = cond_dim if num_filters[i] == 0 else num_filters[i]
if self.separate_projection:
if partial[i]:
raise NotImplementedError(
'Separate projection not yet implemented for ' +
'partial conv')
self.mlps.append(nn.Sequential(*mlp))
self.gammas.append(
conv_block(mlp_ch, num_features,
kernel_size,
padding=padding,
weight_norm_type=weight_norm_type))
self.betas.append(
conv_block(mlp_ch, num_features,
kernel_size,
padding=padding,
weight_norm_type=weight_norm_type))
else:
mlp += [conv_block(mlp_ch, num_features * 2, kernel_size,
padding=padding,
weight_norm_type=weight_norm_type)]
self.mlps.append(sequential(*mlp))
self.norm = get_activation_norm_layer(num_features,
activation_norm_type,
2,
**vars(activation_norm_params))
self.conditional = True
def forward(self, x, *cond_inputs, **kwargs):
r"""Spatially Adaptive Normalization (SPADE) forward.
Args:
x (N x C1 x H x W tensor) : Input tensor.
cond_inputs (list of tensors) : Conditional maps for SPADE.
Returns:
output (4D tensor) : Output tensor.
"""
output = self.norm(x) if self.norm is not None else x
for i in range(len(cond_inputs)):
if cond_inputs[i] is None:
continue
label_map = F.interpolate(cond_inputs[i], size=x.size()[2:],
mode='nearest')
if self.separate_projection:
hidden = self.mlps[i](label_map)
gamma = self.gammas[i](hidden)
beta = self.betas[i](hidden)
else:
affine_params = self.mlps[i](label_map)
gamma, beta = affine_params.chunk(2, dim=1)
output = output * (1 + gamma) + beta
return output
class HyperSpatiallyAdaptiveNorm(nn.Module):
r"""Spatially Adaptive Normalization (SPADE) initialization.
Args:
num_features (int) : Number of channels in the input tensor.
cond_dims (int or list of int) : List of numbers of channels
in the conditional input.
num_filters (int): Number of filters in SPADE.
kernel_size (int): Kernel size of the convolutional filters in
the SPADE layer.
weight_norm_type (str): Type of weight normalization.
``'none'``, ``'spectral'``, or ``'weight'``.
activation_norm_type (str):
Type of activation normalization.
``'none'``, ``'instance'``, ``'batch'``, ``'sync_batch'``,
``'layer'``, ``'layer_2d'``, ``'group'``.
is_hyper (bool): Whether to use hyper SPADE.
"""
def __init__(self, num_features, cond_dims,
num_filters=0, kernel_size=3,
weight_norm_type='',
activation_norm_type='sync_batch', is_hyper=True):
super().__init__()
padding = kernel_size // 2
self.mlps = nn.ModuleList()
if type(cond_dims) != list:
cond_dims = [cond_dims]
for i, cond_dim in enumerate(cond_dims):
mlp = []
if not is_hyper or (i != 0):
if num_filters > 0:
mlp += [Conv2dBlock(cond_dim, num_filters, kernel_size,
padding=padding,
weight_norm_type=weight_norm_type,
nonlinearity='relu')]
mlp_ch = cond_dim if num_filters == 0 else num_filters
mlp += [Conv2dBlock(mlp_ch, num_features * 2, kernel_size,
padding=padding,
weight_norm_type=weight_norm_type)]
mlp = nn.Sequential(*mlp)
else:
if num_filters > 0:
raise ValueError('Multi hyper layer not supported yet.')
mlp = HyperConv2d(padding=padding)
self.mlps.append(mlp)
self.norm = get_activation_norm_layer(num_features,
activation_norm_type,
2,
affine=False)
self.conditional = True
def forward(self, x, *cond_inputs,
norm_weights=(None, None), **kwargs):
r"""Spatially Adaptive Normalization (SPADE) forward.
Args:
x (4D tensor) : Input tensor.
cond_inputs (list of tensors) : Conditional maps for SPADE.
norm_weights (5D tensor or list of tensors): conv weights or
[weights, biases].
Returns:
output (4D tensor) : Output tensor.
"""
output = self.norm(x)
for i in range(len(cond_inputs)):
if cond_inputs[i] is None:
continue
if type(cond_inputs[i]) == list:
cond_input, mask = cond_inputs[i]
mask = F.interpolate(mask, size=x.size()[2:], mode='bilinear',
align_corners=False)
else:
cond_input = cond_inputs[i]
mask = None
label_map = F.interpolate(cond_input, size=x.size()[2:])
if norm_weights is None or norm_weights[0] is None or i != 0:
affine_params = self.mlps[i](label_map)
else:
affine_params = self.mlps[i](label_map,
conv_weights=norm_weights)
gamma, beta = affine_params.chunk(2, dim=1)
if mask is not None:
gamma = gamma * (1 - mask)
beta = beta * (1 - mask)
output = output * (1 + gamma) + beta
return output
class LayerNorm2d(nn.Module):
r"""Layer Normalization as introduced in
https://arxiv.org/abs/1607.06450.
This is the usual way to apply layer normalization in CNNs.
Note that unlike the pytorch implementation which applies per-element
scale and bias, here it applies per-channel scale and bias, similar to
batch/instance normalization.
Args:
num_features (int): Number of channels in the input tensor.
eps (float, optional, default=1e-5): a value added to the
denominator for numerical stability.
affine (bool, optional, default=False): If ``True``, performs
affine transformation after normalization.
"""
def __init__(self, num_features, eps=1e-5, affine=True):
super(LayerNorm2d, self).__init__()
self.num_features = num_features
self.affine = affine
self.eps = eps
if self.affine:
self.gamma = nn.Parameter(torch.Tensor(num_features).uniform_())
self.beta = nn.Parameter(torch.zeros(num_features))
def forward(self, x):
r"""
Args:
x (tensor): Input tensor.
"""
shape = [-1] + [1] * (x.dim() - 1)
if x.size(0) == 1:
mean = x.view(-1).mean().view(*shape)
std = x.view(-1).std().view(*shape)
else:
mean = x.view(x.size(0), -1).mean(1).view(*shape)
std = x.view(x.size(0), -1).std(1).view(*shape)
x = (x - mean) / (std + self.eps)
if self.affine:
shape = [1, -1] + [1] * (x.dim() - 2)
x = x * self.gamma.view(*shape) + self.beta.view(*shape)
return x
def get_activation_norm_layer(num_features, norm_type,
input_dim, **norm_params):
r"""Return an activation normalization layer.
Args:
num_features (int): Number of feature channels.
norm_type (str):
Type of activation normalization.
``'none'``, ``'instance'``, ``'batch'``, ``'sync_batch'``,
``'layer'``, ``'layer_2d'``, ``'group'``, ``'adaptive'``,
``'spatially_adaptive'`` or ``'hyper_spatially_adaptive'``.
input_dim (int): Number of input dimensions.
norm_params: Arbitrary keyword arguments that will be used to
initialize the activation normalization.
"""
input_dim = max(input_dim, 1) # Norm1d works with both 0d and 1d inputs
if norm_type == 'none' or norm_type == '':
norm_layer = None
elif norm_type == 'batch':
# norm = getattr(nn, 'BatchNorm%dd' % input_dim)
norm = getattr(sync_batchnorm, 'SynchronizedBatchNorm%dd' % input_dim)
norm_layer = norm(num_features, **norm_params)
elif norm_type == 'instance':
affine = norm_params.pop('affine', True) # Use affine=True by default
norm = getattr(nn, 'InstanceNorm%dd' % input_dim)
norm_layer = norm(num_features, affine=affine, **norm_params)
elif norm_type == 'sync_batch':
# There is a bug of using amp O1 with synchronize batch norm.
# The lines below fix it.
affine = norm_params.pop('affine', True)
# Always call SyncBN with affine=True
norm_layer = SyncBatchNorm(num_features, affine=True, **norm_params)
norm_layer.weight.requires_grad = affine
norm_layer.bias.requires_grad = affine
elif norm_type == 'layer':
norm_layer = nn.LayerNorm(num_features, **norm_params)
elif norm_type == 'layer_2d':
norm_layer = LayerNorm2d(num_features, **norm_params)
elif norm_type == 'group':
norm_layer = nn.GroupNorm(num_channels=num_features, **norm_params)
elif norm_type == 'adaptive':
norm_layer = AdaptiveNorm(num_features, **norm_params)
elif norm_type == 'spatially_adaptive':
if input_dim != 2:
raise ValueError('Spatially adaptive normalization layers '
'only supports 2D input')
norm_layer = SpatiallyAdaptiveNorm(num_features, **norm_params)
elif norm_type == 'hyper_spatially_adaptive':
if input_dim != 2:
raise ValueError('Spatially adaptive normalization layers '
'only supports 2D input')
norm_layer = HyperSpatiallyAdaptiveNorm(num_features, **norm_params)
else:
raise ValueError('Activation norm layer %s '
'is not recognized' % norm_type)
return norm_layer |