Doctor-Shotgun commited on
Commit
f4d375f
·
verified ·
1 Parent(s): 01f0472

Training in progress, step 512, checkpoint

Browse files
Files changed (35) hide show
  1. checkpoint-512/README.md +202 -0
  2. checkpoint-512/adapter_config.json +40 -0
  3. checkpoint-512/adapter_model.safetensors +3 -0
  4. checkpoint-512/global_step512/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
  5. checkpoint-512/global_step512/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt +3 -0
  6. checkpoint-512/global_step512/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt +3 -0
  7. checkpoint-512/global_step512/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt +3 -0
  8. checkpoint-512/global_step512/bf16_zero_pp_rank_4_mp_rank_00_optim_states.pt +3 -0
  9. checkpoint-512/global_step512/bf16_zero_pp_rank_5_mp_rank_00_optim_states.pt +3 -0
  10. checkpoint-512/global_step512/bf16_zero_pp_rank_6_mp_rank_00_optim_states.pt +3 -0
  11. checkpoint-512/global_step512/bf16_zero_pp_rank_7_mp_rank_00_optim_states.pt +3 -0
  12. checkpoint-512/global_step512/zero_pp_rank_0_mp_rank_00_model_states.pt +3 -0
  13. checkpoint-512/global_step512/zero_pp_rank_1_mp_rank_00_model_states.pt +3 -0
  14. checkpoint-512/global_step512/zero_pp_rank_2_mp_rank_00_model_states.pt +3 -0
  15. checkpoint-512/global_step512/zero_pp_rank_3_mp_rank_00_model_states.pt +3 -0
  16. checkpoint-512/global_step512/zero_pp_rank_4_mp_rank_00_model_states.pt +3 -0
  17. checkpoint-512/global_step512/zero_pp_rank_5_mp_rank_00_model_states.pt +3 -0
  18. checkpoint-512/global_step512/zero_pp_rank_6_mp_rank_00_model_states.pt +3 -0
  19. checkpoint-512/global_step512/zero_pp_rank_7_mp_rank_00_model_states.pt +3 -0
  20. checkpoint-512/latest +1 -0
  21. checkpoint-512/rng_state_0.pth +3 -0
  22. checkpoint-512/rng_state_1.pth +3 -0
  23. checkpoint-512/rng_state_2.pth +3 -0
  24. checkpoint-512/rng_state_3.pth +3 -0
  25. checkpoint-512/rng_state_4.pth +3 -0
  26. checkpoint-512/rng_state_5.pth +3 -0
  27. checkpoint-512/rng_state_6.pth +3 -0
  28. checkpoint-512/rng_state_7.pth +3 -0
  29. checkpoint-512/scheduler.pt +3 -0
  30. checkpoint-512/special_tokens_map.json +23 -0
  31. checkpoint-512/tokenizer.json +3 -0
  32. checkpoint-512/tokenizer_config.json +2064 -0
  33. checkpoint-512/trainer_state.json +3617 -0
  34. checkpoint-512/training_args.bin +3 -0
  35. checkpoint-512/zero_to_fp32.py +674 -0
checkpoint-512/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: meta-llama/Llama-3.3-70B-Instruct
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.14.0
checkpoint-512/adapter_config.json ADDED
@@ -0,0 +1,40 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "meta-llama/Llama-3.3-70B-Instruct",
5
+ "bias": "none",
6
+ "eva_config": null,
7
+ "exclude_modules": null,
8
+ "fan_in_fan_out": null,
9
+ "inference_mode": true,
10
+ "init_lora_weights": true,
11
+ "layer_replication": null,
12
+ "layers_pattern": null,
13
+ "layers_to_transform": null,
14
+ "loftq_config": {},
15
+ "lora_alpha": 16,
16
+ "lora_bias": false,
17
+ "lora_dropout": 0.05,
18
+ "megatron_config": null,
19
+ "megatron_core": "megatron.core",
20
+ "modules_to_save": [
21
+ "embed_tokens",
22
+ "lm_head"
23
+ ],
24
+ "peft_type": "LORA",
25
+ "r": 128,
26
+ "rank_pattern": {},
27
+ "revision": null,
28
+ "target_modules": [
29
+ "o_proj",
30
+ "down_proj",
31
+ "k_proj",
32
+ "gate_proj",
33
+ "q_proj",
34
+ "up_proj",
35
+ "v_proj"
36
+ ],
37
+ "task_type": "CAUSAL_LM",
38
+ "use_dora": false,
39
+ "use_rslora": true
40
+ }
checkpoint-512/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0a778af1a896b64001ccc32c47658eadf6236f2ae36db71e5099ce9d7d25e8b0
3
+ size 7516349296
checkpoint-512/global_step512/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6a5db84a3d735d37901105460e27a8bb3bb91bb366fcea2f9cae396c6cd08f01
3
+ size 3312262110
checkpoint-512/global_step512/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7d88fe8006a0636fd8ea88a146ce42039d36f47ae414bcefc7dd911ae5859def
3
+ size 3312262110
checkpoint-512/global_step512/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3811761b68708fd5281c3675410988a4f9cb76fbab1b386c30c272042ccefdb8
3
+ size 3312262110
checkpoint-512/global_step512/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b3d6a1fc5ef044a0316bf431f824c160d059fa86e66f6e6464960dba8091d92f
3
+ size 3312262110
checkpoint-512/global_step512/bf16_zero_pp_rank_4_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a7bcc3526dee730e6a9311daf0f1087a1bc8114d3e37e80364645ca130335e9a
3
+ size 3312262110
checkpoint-512/global_step512/bf16_zero_pp_rank_5_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:36bcf0f59324801544f1471f955e2ee84010277a060084fc5731225b7cd1af2b
3
+ size 3312262110
checkpoint-512/global_step512/bf16_zero_pp_rank_6_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:81078e90b503b5d4ca0efd8713d1909cd94d1904dd89fda87bf1ec31c3fef78b
3
+ size 3312262110
checkpoint-512/global_step512/bf16_zero_pp_rank_7_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b413dc10fba865216b3fc7c91ca794d592be9bfef8a5444d8f1a1bf85c9d1667
3
+ size 3312262110
checkpoint-512/global_step512/zero_pp_rank_0_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bc2934770b45e1f10c1f51d3f4da6bbeeaf057f88a0da4f5f5b48804dc3b1994
3
+ size 1120962
checkpoint-512/global_step512/zero_pp_rank_1_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:286430da97059339ca782af2630d2aee6703400e91fffad242fe8ee792ba65a4
3
+ size 1120962
checkpoint-512/global_step512/zero_pp_rank_2_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:02864b47c277b22ae4d0687ded1176860811b876e13d8e5faea355eb621501eb
3
+ size 1120962
checkpoint-512/global_step512/zero_pp_rank_3_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:62c3da55fa10e6f850f7a53169943c2081496cf74cb7816ccce6d1f545e26aa9
3
+ size 1120962
checkpoint-512/global_step512/zero_pp_rank_4_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cd789d300c4c18bd0519f508e4e91517acbfb4a81f9946f29eb81e9d36b444ad
3
+ size 1120962
checkpoint-512/global_step512/zero_pp_rank_5_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9b58e26e3dfc1129d7196d24529646a884d9ea35d447797c1704f9af7f8ca89c
3
+ size 1120962
checkpoint-512/global_step512/zero_pp_rank_6_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2eafbda36286ce606fb5a34840e1e1e38e3d8ea4a843195db2538d11a0b4b438
3
+ size 1120962
checkpoint-512/global_step512/zero_pp_rank_7_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:83baa75623c78d8f91c6b2e64569f308a7462b877688ee00ed0feac6f820a849
3
+ size 1120962
checkpoint-512/latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step512
checkpoint-512/rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d81bdf35d4a96f83d17747658fc8419a08891834a6563b21948b87add9fb04d4
3
+ size 15984
checkpoint-512/rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:16b2226b3baf281c1a4682d3589cca22c49c03d08ddabba4b7bf0cd8f962e763
3
+ size 15984
checkpoint-512/rng_state_2.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2747bc04dd2eeac95885e98e2187e3bcd4afa3a342b84be848f831df95b5a45c
3
+ size 15984
checkpoint-512/rng_state_3.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:748ce8f6af9ee4f71634326ef0feab2689709ba265189db14e8ad2597a6a069f
3
+ size 15984
checkpoint-512/rng_state_4.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5a305b9ee5552eafde4144f85827de5111e284b7a80d0730305caf122ddcb1b2
3
+ size 15984
checkpoint-512/rng_state_5.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:994783fa7f186ee1e47f58286d2fac359247ace5cf6839cc27dd9554cec8f4c3
3
+ size 15984
checkpoint-512/rng_state_6.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e0fd9d9563c1219f3b991eb043682a89ca78359fcde7abae21bd4e3723ade958
3
+ size 15984
checkpoint-512/rng_state_7.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6d2b56147e1688b1e0eb18ac78736638ed468c8d814b3f285be263e33b30a8f1
3
+ size 15984
checkpoint-512/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c13d82dab2f9cabcebe9bfed01f579fd2743b456246653711702e6bb767ac220
3
+ size 1064
checkpoint-512/special_tokens_map.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<|begin_of_text|>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "<|eot_id|>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "<|finetune_right_pad_id|>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ }
23
+ }
checkpoint-512/tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6b9e4e7fb171f92fd137b777cc2714bf87d11576700a1dcd7a399e7bbe39537b
3
+ size 17209920
checkpoint-512/tokenizer_config.json ADDED
@@ -0,0 +1,2064 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "128000": {
4
+ "content": "<|begin_of_text|>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "128001": {
12
+ "content": "<|end_of_text|>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "128002": {
20
+ "content": "<|reserved_special_token_0|>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "128003": {
28
+ "content": "<|reserved_special_token_1|>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "128004": {
36
+ "content": "<|finetune_right_pad_id|>",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ },
43
+ "128005": {
44
+ "content": "<|reserved_special_token_2|>",
45
+ "lstrip": false,
46
+ "normalized": false,
47
+ "rstrip": false,
48
+ "single_word": false,
49
+ "special": true
50
+ },
51
+ "128006": {
52
+ "content": "<|start_header_id|>",
53
+ "lstrip": false,
54
+ "normalized": false,
55
+ "rstrip": false,
56
+ "single_word": false,
57
+ "special": true
58
+ },
59
+ "128007": {
60
+ "content": "<|end_header_id|>",
61
+ "lstrip": false,
62
+ "normalized": false,
63
+ "rstrip": false,
64
+ "single_word": false,
65
+ "special": true
66
+ },
67
+ "128008": {
68
+ "content": "<|eom_id|>",
69
+ "lstrip": false,
70
+ "normalized": false,
71
+ "rstrip": false,
72
+ "single_word": false,
73
+ "special": true
74
+ },
75
+ "128009": {
76
+ "content": "<|eot_id|>",
77
+ "lstrip": false,
78
+ "normalized": false,
79
+ "rstrip": false,
80
+ "single_word": false,
81
+ "special": true
82
+ },
83
+ "128010": {
84
+ "content": "<|python_tag|>",
85
+ "lstrip": false,
86
+ "normalized": false,
87
+ "rstrip": false,
88
+ "single_word": false,
89
+ "special": true
90
+ },
91
+ "128011": {
92
+ "content": "<|reserved_special_token_3|>",
93
+ "lstrip": false,
94
+ "normalized": false,
95
+ "rstrip": false,
96
+ "single_word": false,
97
+ "special": true
98
+ },
99
+ "128012": {
100
+ "content": "<|reserved_special_token_4|>",
101
+ "lstrip": false,
102
+ "normalized": false,
103
+ "rstrip": false,
104
+ "single_word": false,
105
+ "special": true
106
+ },
107
+ "128013": {
108
+ "content": "<|reserved_special_token_5|>",
109
+ "lstrip": false,
110
+ "normalized": false,
111
+ "rstrip": false,
112
+ "single_word": false,
113
+ "special": true
114
+ },
115
+ "128014": {
116
+ "content": "<|reserved_special_token_6|>",
117
+ "lstrip": false,
118
+ "normalized": false,
119
+ "rstrip": false,
120
+ "single_word": false,
121
+ "special": true
122
+ },
123
+ "128015": {
124
+ "content": "<|reserved_special_token_7|>",
125
+ "lstrip": false,
126
+ "normalized": false,
127
+ "rstrip": false,
128
+ "single_word": false,
129
+ "special": true
130
+ },
131
+ "128016": {
132
+ "content": "<|reserved_special_token_8|>",
133
+ "lstrip": false,
134
+ "normalized": false,
135
+ "rstrip": false,
136
+ "single_word": false,
137
+ "special": true
138
+ },
139
+ "128017": {
140
+ "content": "<|reserved_special_token_9|>",
141
+ "lstrip": false,
142
+ "normalized": false,
143
+ "rstrip": false,
144
+ "single_word": false,
145
+ "special": true
146
+ },
147
+ "128018": {
148
+ "content": "<|reserved_special_token_10|>",
149
+ "lstrip": false,
150
+ "normalized": false,
151
+ "rstrip": false,
152
+ "single_word": false,
153
+ "special": true
154
+ },
155
+ "128019": {
156
+ "content": "<|reserved_special_token_11|>",
157
+ "lstrip": false,
158
+ "normalized": false,
159
+ "rstrip": false,
160
+ "single_word": false,
161
+ "special": true
162
+ },
163
+ "128020": {
164
+ "content": "<|reserved_special_token_12|>",
165
+ "lstrip": false,
166
+ "normalized": false,
167
+ "rstrip": false,
168
+ "single_word": false,
169
+ "special": true
170
+ },
171
+ "128021": {
172
+ "content": "<|reserved_special_token_13|>",
173
+ "lstrip": false,
174
+ "normalized": false,
175
+ "rstrip": false,
176
+ "single_word": false,
177
+ "special": true
178
+ },
179
+ "128022": {
180
+ "content": "<|reserved_special_token_14|>",
181
+ "lstrip": false,
182
+ "normalized": false,
183
+ "rstrip": false,
184
+ "single_word": false,
185
+ "special": true
186
+ },
187
+ "128023": {
188
+ "content": "<|reserved_special_token_15|>",
189
+ "lstrip": false,
190
+ "normalized": false,
191
+ "rstrip": false,
192
+ "single_word": false,
193
+ "special": true
194
+ },
195
+ "128024": {
196
+ "content": "<|reserved_special_token_16|>",
197
+ "lstrip": false,
198
+ "normalized": false,
199
+ "rstrip": false,
200
+ "single_word": false,
201
+ "special": true
202
+ },
203
+ "128025": {
204
+ "content": "<|reserved_special_token_17|>",
205
+ "lstrip": false,
206
+ "normalized": false,
207
+ "rstrip": false,
208
+ "single_word": false,
209
+ "special": true
210
+ },
211
+ "128026": {
212
+ "content": "<|reserved_special_token_18|>",
213
+ "lstrip": false,
214
+ "normalized": false,
215
+ "rstrip": false,
216
+ "single_word": false,
217
+ "special": true
218
+ },
219
+ "128027": {
220
+ "content": "<|reserved_special_token_19|>",
221
+ "lstrip": false,
222
+ "normalized": false,
223
+ "rstrip": false,
224
+ "single_word": false,
225
+ "special": true
226
+ },
227
+ "128028": {
228
+ "content": "<|reserved_special_token_20|>",
229
+ "lstrip": false,
230
+ "normalized": false,
231
+ "rstrip": false,
232
+ "single_word": false,
233
+ "special": true
234
+ },
235
+ "128029": {
236
+ "content": "<|reserved_special_token_21|>",
237
+ "lstrip": false,
238
+ "normalized": false,
239
+ "rstrip": false,
240
+ "single_word": false,
241
+ "special": true
242
+ },
243
+ "128030": {
244
+ "content": "<|reserved_special_token_22|>",
245
+ "lstrip": false,
246
+ "normalized": false,
247
+ "rstrip": false,
248
+ "single_word": false,
249
+ "special": true
250
+ },
251
+ "128031": {
252
+ "content": "<|reserved_special_token_23|>",
253
+ "lstrip": false,
254
+ "normalized": false,
255
+ "rstrip": false,
256
+ "single_word": false,
257
+ "special": true
258
+ },
259
+ "128032": {
260
+ "content": "<|reserved_special_token_24|>",
261
+ "lstrip": false,
262
+ "normalized": false,
263
+ "rstrip": false,
264
+ "single_word": false,
265
+ "special": true
266
+ },
267
+ "128033": {
268
+ "content": "<|reserved_special_token_25|>",
269
+ "lstrip": false,
270
+ "normalized": false,
271
+ "rstrip": false,
272
+ "single_word": false,
273
+ "special": true
274
+ },
275
+ "128034": {
276
+ "content": "<|reserved_special_token_26|>",
277
+ "lstrip": false,
278
+ "normalized": false,
279
+ "rstrip": false,
280
+ "single_word": false,
281
+ "special": true
282
+ },
283
+ "128035": {
284
+ "content": "<|reserved_special_token_27|>",
285
+ "lstrip": false,
286
+ "normalized": false,
287
+ "rstrip": false,
288
+ "single_word": false,
289
+ "special": true
290
+ },
291
+ "128036": {
292
+ "content": "<|reserved_special_token_28|>",
293
+ "lstrip": false,
294
+ "normalized": false,
295
+ "rstrip": false,
296
+ "single_word": false,
297
+ "special": true
298
+ },
299
+ "128037": {
300
+ "content": "<|reserved_special_token_29|>",
301
+ "lstrip": false,
302
+ "normalized": false,
303
+ "rstrip": false,
304
+ "single_word": false,
305
+ "special": true
306
+ },
307
+ "128038": {
308
+ "content": "<|reserved_special_token_30|>",
309
+ "lstrip": false,
310
+ "normalized": false,
311
+ "rstrip": false,
312
+ "single_word": false,
313
+ "special": true
314
+ },
315
+ "128039": {
316
+ "content": "<|reserved_special_token_31|>",
317
+ "lstrip": false,
318
+ "normalized": false,
319
+ "rstrip": false,
320
+ "single_word": false,
321
+ "special": true
322
+ },
323
+ "128040": {
324
+ "content": "<|reserved_special_token_32|>",
325
+ "lstrip": false,
326
+ "normalized": false,
327
+ "rstrip": false,
328
+ "single_word": false,
329
+ "special": true
330
+ },
331
+ "128041": {
332
+ "content": "<|reserved_special_token_33|>",
333
+ "lstrip": false,
334
+ "normalized": false,
335
+ "rstrip": false,
336
+ "single_word": false,
337
+ "special": true
338
+ },
339
+ "128042": {
340
+ "content": "<|reserved_special_token_34|>",
341
+ "lstrip": false,
342
+ "normalized": false,
343
+ "rstrip": false,
344
+ "single_word": false,
345
+ "special": true
346
+ },
347
+ "128043": {
348
+ "content": "<|reserved_special_token_35|>",
349
+ "lstrip": false,
350
+ "normalized": false,
351
+ "rstrip": false,
352
+ "single_word": false,
353
+ "special": true
354
+ },
355
+ "128044": {
356
+ "content": "<|reserved_special_token_36|>",
357
+ "lstrip": false,
358
+ "normalized": false,
359
+ "rstrip": false,
360
+ "single_word": false,
361
+ "special": true
362
+ },
363
+ "128045": {
364
+ "content": "<|reserved_special_token_37|>",
365
+ "lstrip": false,
366
+ "normalized": false,
367
+ "rstrip": false,
368
+ "single_word": false,
369
+ "special": true
370
+ },
371
+ "128046": {
372
+ "content": "<|reserved_special_token_38|>",
373
+ "lstrip": false,
374
+ "normalized": false,
375
+ "rstrip": false,
376
+ "single_word": false,
377
+ "special": true
378
+ },
379
+ "128047": {
380
+ "content": "<|reserved_special_token_39|>",
381
+ "lstrip": false,
382
+ "normalized": false,
383
+ "rstrip": false,
384
+ "single_word": false,
385
+ "special": true
386
+ },
387
+ "128048": {
388
+ "content": "<|reserved_special_token_40|>",
389
+ "lstrip": false,
390
+ "normalized": false,
391
+ "rstrip": false,
392
+ "single_word": false,
393
+ "special": true
394
+ },
395
+ "128049": {
396
+ "content": "<|reserved_special_token_41|>",
397
+ "lstrip": false,
398
+ "normalized": false,
399
+ "rstrip": false,
400
+ "single_word": false,
401
+ "special": true
402
+ },
403
+ "128050": {
404
+ "content": "<|reserved_special_token_42|>",
405
+ "lstrip": false,
406
+ "normalized": false,
407
+ "rstrip": false,
408
+ "single_word": false,
409
+ "special": true
410
+ },
411
+ "128051": {
412
+ "content": "<|reserved_special_token_43|>",
413
+ "lstrip": false,
414
+ "normalized": false,
415
+ "rstrip": false,
416
+ "single_word": false,
417
+ "special": true
418
+ },
419
+ "128052": {
420
+ "content": "<|reserved_special_token_44|>",
421
+ "lstrip": false,
422
+ "normalized": false,
423
+ "rstrip": false,
424
+ "single_word": false,
425
+ "special": true
426
+ },
427
+ "128053": {
428
+ "content": "<|reserved_special_token_45|>",
429
+ "lstrip": false,
430
+ "normalized": false,
431
+ "rstrip": false,
432
+ "single_word": false,
433
+ "special": true
434
+ },
435
+ "128054": {
436
+ "content": "<|reserved_special_token_46|>",
437
+ "lstrip": false,
438
+ "normalized": false,
439
+ "rstrip": false,
440
+ "single_word": false,
441
+ "special": true
442
+ },
443
+ "128055": {
444
+ "content": "<|reserved_special_token_47|>",
445
+ "lstrip": false,
446
+ "normalized": false,
447
+ "rstrip": false,
448
+ "single_word": false,
449
+ "special": true
450
+ },
451
+ "128056": {
452
+ "content": "<|reserved_special_token_48|>",
453
+ "lstrip": false,
454
+ "normalized": false,
455
+ "rstrip": false,
456
+ "single_word": false,
457
+ "special": true
458
+ },
459
+ "128057": {
460
+ "content": "<|reserved_special_token_49|>",
461
+ "lstrip": false,
462
+ "normalized": false,
463
+ "rstrip": false,
464
+ "single_word": false,
465
+ "special": true
466
+ },
467
+ "128058": {
468
+ "content": "<|reserved_special_token_50|>",
469
+ "lstrip": false,
470
+ "normalized": false,
471
+ "rstrip": false,
472
+ "single_word": false,
473
+ "special": true
474
+ },
475
+ "128059": {
476
+ "content": "<|reserved_special_token_51|>",
477
+ "lstrip": false,
478
+ "normalized": false,
479
+ "rstrip": false,
480
+ "single_word": false,
481
+ "special": true
482
+ },
483
+ "128060": {
484
+ "content": "<|reserved_special_token_52|>",
485
+ "lstrip": false,
486
+ "normalized": false,
487
+ "rstrip": false,
488
+ "single_word": false,
489
+ "special": true
490
+ },
491
+ "128061": {
492
+ "content": "<|reserved_special_token_53|>",
493
+ "lstrip": false,
494
+ "normalized": false,
495
+ "rstrip": false,
496
+ "single_word": false,
497
+ "special": true
498
+ },
499
+ "128062": {
500
+ "content": "<|reserved_special_token_54|>",
501
+ "lstrip": false,
502
+ "normalized": false,
503
+ "rstrip": false,
504
+ "single_word": false,
505
+ "special": true
506
+ },
507
+ "128063": {
508
+ "content": "<|reserved_special_token_55|>",
509
+ "lstrip": false,
510
+ "normalized": false,
511
+ "rstrip": false,
512
+ "single_word": false,
513
+ "special": true
514
+ },
515
+ "128064": {
516
+ "content": "<|reserved_special_token_56|>",
517
+ "lstrip": false,
518
+ "normalized": false,
519
+ "rstrip": false,
520
+ "single_word": false,
521
+ "special": true
522
+ },
523
+ "128065": {
524
+ "content": "<|reserved_special_token_57|>",
525
+ "lstrip": false,
526
+ "normalized": false,
527
+ "rstrip": false,
528
+ "single_word": false,
529
+ "special": true
530
+ },
531
+ "128066": {
532
+ "content": "<|reserved_special_token_58|>",
533
+ "lstrip": false,
534
+ "normalized": false,
535
+ "rstrip": false,
536
+ "single_word": false,
537
+ "special": true
538
+ },
539
+ "128067": {
540
+ "content": "<|reserved_special_token_59|>",
541
+ "lstrip": false,
542
+ "normalized": false,
543
+ "rstrip": false,
544
+ "single_word": false,
545
+ "special": true
546
+ },
547
+ "128068": {
548
+ "content": "<|reserved_special_token_60|>",
549
+ "lstrip": false,
550
+ "normalized": false,
551
+ "rstrip": false,
552
+ "single_word": false,
553
+ "special": true
554
+ },
555
+ "128069": {
556
+ "content": "<|reserved_special_token_61|>",
557
+ "lstrip": false,
558
+ "normalized": false,
559
+ "rstrip": false,
560
+ "single_word": false,
561
+ "special": true
562
+ },
563
+ "128070": {
564
+ "content": "<|reserved_special_token_62|>",
565
+ "lstrip": false,
566
+ "normalized": false,
567
+ "rstrip": false,
568
+ "single_word": false,
569
+ "special": true
570
+ },
571
+ "128071": {
572
+ "content": "<|reserved_special_token_63|>",
573
+ "lstrip": false,
574
+ "normalized": false,
575
+ "rstrip": false,
576
+ "single_word": false,
577
+ "special": true
578
+ },
579
+ "128072": {
580
+ "content": "<|reserved_special_token_64|>",
581
+ "lstrip": false,
582
+ "normalized": false,
583
+ "rstrip": false,
584
+ "single_word": false,
585
+ "special": true
586
+ },
587
+ "128073": {
588
+ "content": "<|reserved_special_token_65|>",
589
+ "lstrip": false,
590
+ "normalized": false,
591
+ "rstrip": false,
592
+ "single_word": false,
593
+ "special": true
594
+ },
595
+ "128074": {
596
+ "content": "<|reserved_special_token_66|>",
597
+ "lstrip": false,
598
+ "normalized": false,
599
+ "rstrip": false,
600
+ "single_word": false,
601
+ "special": true
602
+ },
603
+ "128075": {
604
+ "content": "<|reserved_special_token_67|>",
605
+ "lstrip": false,
606
+ "normalized": false,
607
+ "rstrip": false,
608
+ "single_word": false,
609
+ "special": true
610
+ },
611
+ "128076": {
612
+ "content": "<|reserved_special_token_68|>",
613
+ "lstrip": false,
614
+ "normalized": false,
615
+ "rstrip": false,
616
+ "single_word": false,
617
+ "special": true
618
+ },
619
+ "128077": {
620
+ "content": "<|reserved_special_token_69|>",
621
+ "lstrip": false,
622
+ "normalized": false,
623
+ "rstrip": false,
624
+ "single_word": false,
625
+ "special": true
626
+ },
627
+ "128078": {
628
+ "content": "<|reserved_special_token_70|>",
629
+ "lstrip": false,
630
+ "normalized": false,
631
+ "rstrip": false,
632
+ "single_word": false,
633
+ "special": true
634
+ },
635
+ "128079": {
636
+ "content": "<|reserved_special_token_71|>",
637
+ "lstrip": false,
638
+ "normalized": false,
639
+ "rstrip": false,
640
+ "single_word": false,
641
+ "special": true
642
+ },
643
+ "128080": {
644
+ "content": "<|reserved_special_token_72|>",
645
+ "lstrip": false,
646
+ "normalized": false,
647
+ "rstrip": false,
648
+ "single_word": false,
649
+ "special": true
650
+ },
651
+ "128081": {
652
+ "content": "<|reserved_special_token_73|>",
653
+ "lstrip": false,
654
+ "normalized": false,
655
+ "rstrip": false,
656
+ "single_word": false,
657
+ "special": true
658
+ },
659
+ "128082": {
660
+ "content": "<|reserved_special_token_74|>",
661
+ "lstrip": false,
662
+ "normalized": false,
663
+ "rstrip": false,
664
+ "single_word": false,
665
+ "special": true
666
+ },
667
+ "128083": {
668
+ "content": "<|reserved_special_token_75|>",
669
+ "lstrip": false,
670
+ "normalized": false,
671
+ "rstrip": false,
672
+ "single_word": false,
673
+ "special": true
674
+ },
675
+ "128084": {
676
+ "content": "<|reserved_special_token_76|>",
677
+ "lstrip": false,
678
+ "normalized": false,
679
+ "rstrip": false,
680
+ "single_word": false,
681
+ "special": true
682
+ },
683
+ "128085": {
684
+ "content": "<|reserved_special_token_77|>",
685
+ "lstrip": false,
686
+ "normalized": false,
687
+ "rstrip": false,
688
+ "single_word": false,
689
+ "special": true
690
+ },
691
+ "128086": {
692
+ "content": "<|reserved_special_token_78|>",
693
+ "lstrip": false,
694
+ "normalized": false,
695
+ "rstrip": false,
696
+ "single_word": false,
697
+ "special": true
698
+ },
699
+ "128087": {
700
+ "content": "<|reserved_special_token_79|>",
701
+ "lstrip": false,
702
+ "normalized": false,
703
+ "rstrip": false,
704
+ "single_word": false,
705
+ "special": true
706
+ },
707
+ "128088": {
708
+ "content": "<|reserved_special_token_80|>",
709
+ "lstrip": false,
710
+ "normalized": false,
711
+ "rstrip": false,
712
+ "single_word": false,
713
+ "special": true
714
+ },
715
+ "128089": {
716
+ "content": "<|reserved_special_token_81|>",
717
+ "lstrip": false,
718
+ "normalized": false,
719
+ "rstrip": false,
720
+ "single_word": false,
721
+ "special": true
722
+ },
723
+ "128090": {
724
+ "content": "<|reserved_special_token_82|>",
725
+ "lstrip": false,
726
+ "normalized": false,
727
+ "rstrip": false,
728
+ "single_word": false,
729
+ "special": true
730
+ },
731
+ "128091": {
732
+ "content": "<|reserved_special_token_83|>",
733
+ "lstrip": false,
734
+ "normalized": false,
735
+ "rstrip": false,
736
+ "single_word": false,
737
+ "special": true
738
+ },
739
+ "128092": {
740
+ "content": "<|reserved_special_token_84|>",
741
+ "lstrip": false,
742
+ "normalized": false,
743
+ "rstrip": false,
744
+ "single_word": false,
745
+ "special": true
746
+ },
747
+ "128093": {
748
+ "content": "<|reserved_special_token_85|>",
749
+ "lstrip": false,
750
+ "normalized": false,
751
+ "rstrip": false,
752
+ "single_word": false,
753
+ "special": true
754
+ },
755
+ "128094": {
756
+ "content": "<|reserved_special_token_86|>",
757
+ "lstrip": false,
758
+ "normalized": false,
759
+ "rstrip": false,
760
+ "single_word": false,
761
+ "special": true
762
+ },
763
+ "128095": {
764
+ "content": "<|reserved_special_token_87|>",
765
+ "lstrip": false,
766
+ "normalized": false,
767
+ "rstrip": false,
768
+ "single_word": false,
769
+ "special": true
770
+ },
771
+ "128096": {
772
+ "content": "<|reserved_special_token_88|>",
773
+ "lstrip": false,
774
+ "normalized": false,
775
+ "rstrip": false,
776
+ "single_word": false,
777
+ "special": true
778
+ },
779
+ "128097": {
780
+ "content": "<|reserved_special_token_89|>",
781
+ "lstrip": false,
782
+ "normalized": false,
783
+ "rstrip": false,
784
+ "single_word": false,
785
+ "special": true
786
+ },
787
+ "128098": {
788
+ "content": "<|reserved_special_token_90|>",
789
+ "lstrip": false,
790
+ "normalized": false,
791
+ "rstrip": false,
792
+ "single_word": false,
793
+ "special": true
794
+ },
795
+ "128099": {
796
+ "content": "<|reserved_special_token_91|>",
797
+ "lstrip": false,
798
+ "normalized": false,
799
+ "rstrip": false,
800
+ "single_word": false,
801
+ "special": true
802
+ },
803
+ "128100": {
804
+ "content": "<|reserved_special_token_92|>",
805
+ "lstrip": false,
806
+ "normalized": false,
807
+ "rstrip": false,
808
+ "single_word": false,
809
+ "special": true
810
+ },
811
+ "128101": {
812
+ "content": "<|reserved_special_token_93|>",
813
+ "lstrip": false,
814
+ "normalized": false,
815
+ "rstrip": false,
816
+ "single_word": false,
817
+ "special": true
818
+ },
819
+ "128102": {
820
+ "content": "<|reserved_special_token_94|>",
821
+ "lstrip": false,
822
+ "normalized": false,
823
+ "rstrip": false,
824
+ "single_word": false,
825
+ "special": true
826
+ },
827
+ "128103": {
828
+ "content": "<|reserved_special_token_95|>",
829
+ "lstrip": false,
830
+ "normalized": false,
831
+ "rstrip": false,
832
+ "single_word": false,
833
+ "special": true
834
+ },
835
+ "128104": {
836
+ "content": "<|reserved_special_token_96|>",
837
+ "lstrip": false,
838
+ "normalized": false,
839
+ "rstrip": false,
840
+ "single_word": false,
841
+ "special": true
842
+ },
843
+ "128105": {
844
+ "content": "<|reserved_special_token_97|>",
845
+ "lstrip": false,
846
+ "normalized": false,
847
+ "rstrip": false,
848
+ "single_word": false,
849
+ "special": true
850
+ },
851
+ "128106": {
852
+ "content": "<|reserved_special_token_98|>",
853
+ "lstrip": false,
854
+ "normalized": false,
855
+ "rstrip": false,
856
+ "single_word": false,
857
+ "special": true
858
+ },
859
+ "128107": {
860
+ "content": "<|reserved_special_token_99|>",
861
+ "lstrip": false,
862
+ "normalized": false,
863
+ "rstrip": false,
864
+ "single_word": false,
865
+ "special": true
866
+ },
867
+ "128108": {
868
+ "content": "<|reserved_special_token_100|>",
869
+ "lstrip": false,
870
+ "normalized": false,
871
+ "rstrip": false,
872
+ "single_word": false,
873
+ "special": true
874
+ },
875
+ "128109": {
876
+ "content": "<|reserved_special_token_101|>",
877
+ "lstrip": false,
878
+ "normalized": false,
879
+ "rstrip": false,
880
+ "single_word": false,
881
+ "special": true
882
+ },
883
+ "128110": {
884
+ "content": "<|reserved_special_token_102|>",
885
+ "lstrip": false,
886
+ "normalized": false,
887
+ "rstrip": false,
888
+ "single_word": false,
889
+ "special": true
890
+ },
891
+ "128111": {
892
+ "content": "<|reserved_special_token_103|>",
893
+ "lstrip": false,
894
+ "normalized": false,
895
+ "rstrip": false,
896
+ "single_word": false,
897
+ "special": true
898
+ },
899
+ "128112": {
900
+ "content": "<|reserved_special_token_104|>",
901
+ "lstrip": false,
902
+ "normalized": false,
903
+ "rstrip": false,
904
+ "single_word": false,
905
+ "special": true
906
+ },
907
+ "128113": {
908
+ "content": "<|reserved_special_token_105|>",
909
+ "lstrip": false,
910
+ "normalized": false,
911
+ "rstrip": false,
912
+ "single_word": false,
913
+ "special": true
914
+ },
915
+ "128114": {
916
+ "content": "<|reserved_special_token_106|>",
917
+ "lstrip": false,
918
+ "normalized": false,
919
+ "rstrip": false,
920
+ "single_word": false,
921
+ "special": true
922
+ },
923
+ "128115": {
924
+ "content": "<|reserved_special_token_107|>",
925
+ "lstrip": false,
926
+ "normalized": false,
927
+ "rstrip": false,
928
+ "single_word": false,
929
+ "special": true
930
+ },
931
+ "128116": {
932
+ "content": "<|reserved_special_token_108|>",
933
+ "lstrip": false,
934
+ "normalized": false,
935
+ "rstrip": false,
936
+ "single_word": false,
937
+ "special": true
938
+ },
939
+ "128117": {
940
+ "content": "<|reserved_special_token_109|>",
941
+ "lstrip": false,
942
+ "normalized": false,
943
+ "rstrip": false,
944
+ "single_word": false,
945
+ "special": true
946
+ },
947
+ "128118": {
948
+ "content": "<|reserved_special_token_110|>",
949
+ "lstrip": false,
950
+ "normalized": false,
951
+ "rstrip": false,
952
+ "single_word": false,
953
+ "special": true
954
+ },
955
+ "128119": {
956
+ "content": "<|reserved_special_token_111|>",
957
+ "lstrip": false,
958
+ "normalized": false,
959
+ "rstrip": false,
960
+ "single_word": false,
961
+ "special": true
962
+ },
963
+ "128120": {
964
+ "content": "<|reserved_special_token_112|>",
965
+ "lstrip": false,
966
+ "normalized": false,
967
+ "rstrip": false,
968
+ "single_word": false,
969
+ "special": true
970
+ },
971
+ "128121": {
972
+ "content": "<|reserved_special_token_113|>",
973
+ "lstrip": false,
974
+ "normalized": false,
975
+ "rstrip": false,
976
+ "single_word": false,
977
+ "special": true
978
+ },
979
+ "128122": {
980
+ "content": "<|reserved_special_token_114|>",
981
+ "lstrip": false,
982
+ "normalized": false,
983
+ "rstrip": false,
984
+ "single_word": false,
985
+ "special": true
986
+ },
987
+ "128123": {
988
+ "content": "<|reserved_special_token_115|>",
989
+ "lstrip": false,
990
+ "normalized": false,
991
+ "rstrip": false,
992
+ "single_word": false,
993
+ "special": true
994
+ },
995
+ "128124": {
996
+ "content": "<|reserved_special_token_116|>",
997
+ "lstrip": false,
998
+ "normalized": false,
999
+ "rstrip": false,
1000
+ "single_word": false,
1001
+ "special": true
1002
+ },
1003
+ "128125": {
1004
+ "content": "<|reserved_special_token_117|>",
1005
+ "lstrip": false,
1006
+ "normalized": false,
1007
+ "rstrip": false,
1008
+ "single_word": false,
1009
+ "special": true
1010
+ },
1011
+ "128126": {
1012
+ "content": "<|reserved_special_token_118|>",
1013
+ "lstrip": false,
1014
+ "normalized": false,
1015
+ "rstrip": false,
1016
+ "single_word": false,
1017
+ "special": true
1018
+ },
1019
+ "128127": {
1020
+ "content": "<|reserved_special_token_119|>",
1021
+ "lstrip": false,
1022
+ "normalized": false,
1023
+ "rstrip": false,
1024
+ "single_word": false,
1025
+ "special": true
1026
+ },
1027
+ "128128": {
1028
+ "content": "<|reserved_special_token_120|>",
1029
+ "lstrip": false,
1030
+ "normalized": false,
1031
+ "rstrip": false,
1032
+ "single_word": false,
1033
+ "special": true
1034
+ },
1035
+ "128129": {
1036
+ "content": "<|reserved_special_token_121|>",
1037
+ "lstrip": false,
1038
+ "normalized": false,
1039
+ "rstrip": false,
1040
+ "single_word": false,
1041
+ "special": true
1042
+ },
1043
+ "128130": {
1044
+ "content": "<|reserved_special_token_122|>",
1045
+ "lstrip": false,
1046
+ "normalized": false,
1047
+ "rstrip": false,
1048
+ "single_word": false,
1049
+ "special": true
1050
+ },
1051
+ "128131": {
1052
+ "content": "<|reserved_special_token_123|>",
1053
+ "lstrip": false,
1054
+ "normalized": false,
1055
+ "rstrip": false,
1056
+ "single_word": false,
1057
+ "special": true
1058
+ },
1059
+ "128132": {
1060
+ "content": "<|reserved_special_token_124|>",
1061
+ "lstrip": false,
1062
+ "normalized": false,
1063
+ "rstrip": false,
1064
+ "single_word": false,
1065
+ "special": true
1066
+ },
1067
+ "128133": {
1068
+ "content": "<|reserved_special_token_125|>",
1069
+ "lstrip": false,
1070
+ "normalized": false,
1071
+ "rstrip": false,
1072
+ "single_word": false,
1073
+ "special": true
1074
+ },
1075
+ "128134": {
1076
+ "content": "<|reserved_special_token_126|>",
1077
+ "lstrip": false,
1078
+ "normalized": false,
1079
+ "rstrip": false,
1080
+ "single_word": false,
1081
+ "special": true
1082
+ },
1083
+ "128135": {
1084
+ "content": "<|reserved_special_token_127|>",
1085
+ "lstrip": false,
1086
+ "normalized": false,
1087
+ "rstrip": false,
1088
+ "single_word": false,
1089
+ "special": true
1090
+ },
1091
+ "128136": {
1092
+ "content": "<|reserved_special_token_128|>",
1093
+ "lstrip": false,
1094
+ "normalized": false,
1095
+ "rstrip": false,
1096
+ "single_word": false,
1097
+ "special": true
1098
+ },
1099
+ "128137": {
1100
+ "content": "<|reserved_special_token_129|>",
1101
+ "lstrip": false,
1102
+ "normalized": false,
1103
+ "rstrip": false,
1104
+ "single_word": false,
1105
+ "special": true
1106
+ },
1107
+ "128138": {
1108
+ "content": "<|reserved_special_token_130|>",
1109
+ "lstrip": false,
1110
+ "normalized": false,
1111
+ "rstrip": false,
1112
+ "single_word": false,
1113
+ "special": true
1114
+ },
1115
+ "128139": {
1116
+ "content": "<|reserved_special_token_131|>",
1117
+ "lstrip": false,
1118
+ "normalized": false,
1119
+ "rstrip": false,
1120
+ "single_word": false,
1121
+ "special": true
1122
+ },
1123
+ "128140": {
1124
+ "content": "<|reserved_special_token_132|>",
1125
+ "lstrip": false,
1126
+ "normalized": false,
1127
+ "rstrip": false,
1128
+ "single_word": false,
1129
+ "special": true
1130
+ },
1131
+ "128141": {
1132
+ "content": "<|reserved_special_token_133|>",
1133
+ "lstrip": false,
1134
+ "normalized": false,
1135
+ "rstrip": false,
1136
+ "single_word": false,
1137
+ "special": true
1138
+ },
1139
+ "128142": {
1140
+ "content": "<|reserved_special_token_134|>",
1141
+ "lstrip": false,
1142
+ "normalized": false,
1143
+ "rstrip": false,
1144
+ "single_word": false,
1145
+ "special": true
1146
+ },
1147
+ "128143": {
1148
+ "content": "<|reserved_special_token_135|>",
1149
+ "lstrip": false,
1150
+ "normalized": false,
1151
+ "rstrip": false,
1152
+ "single_word": false,
1153
+ "special": true
1154
+ },
1155
+ "128144": {
1156
+ "content": "<|reserved_special_token_136|>",
1157
+ "lstrip": false,
1158
+ "normalized": false,
1159
+ "rstrip": false,
1160
+ "single_word": false,
1161
+ "special": true
1162
+ },
1163
+ "128145": {
1164
+ "content": "<|reserved_special_token_137|>",
1165
+ "lstrip": false,
1166
+ "normalized": false,
1167
+ "rstrip": false,
1168
+ "single_word": false,
1169
+ "special": true
1170
+ },
1171
+ "128146": {
1172
+ "content": "<|reserved_special_token_138|>",
1173
+ "lstrip": false,
1174
+ "normalized": false,
1175
+ "rstrip": false,
1176
+ "single_word": false,
1177
+ "special": true
1178
+ },
1179
+ "128147": {
1180
+ "content": "<|reserved_special_token_139|>",
1181
+ "lstrip": false,
1182
+ "normalized": false,
1183
+ "rstrip": false,
1184
+ "single_word": false,
1185
+ "special": true
1186
+ },
1187
+ "128148": {
1188
+ "content": "<|reserved_special_token_140|>",
1189
+ "lstrip": false,
1190
+ "normalized": false,
1191
+ "rstrip": false,
1192
+ "single_word": false,
1193
+ "special": true
1194
+ },
1195
+ "128149": {
1196
+ "content": "<|reserved_special_token_141|>",
1197
+ "lstrip": false,
1198
+ "normalized": false,
1199
+ "rstrip": false,
1200
+ "single_word": false,
1201
+ "special": true
1202
+ },
1203
+ "128150": {
1204
+ "content": "<|reserved_special_token_142|>",
1205
+ "lstrip": false,
1206
+ "normalized": false,
1207
+ "rstrip": false,
1208
+ "single_word": false,
1209
+ "special": true
1210
+ },
1211
+ "128151": {
1212
+ "content": "<|reserved_special_token_143|>",
1213
+ "lstrip": false,
1214
+ "normalized": false,
1215
+ "rstrip": false,
1216
+ "single_word": false,
1217
+ "special": true
1218
+ },
1219
+ "128152": {
1220
+ "content": "<|reserved_special_token_144|>",
1221
+ "lstrip": false,
1222
+ "normalized": false,
1223
+ "rstrip": false,
1224
+ "single_word": false,
1225
+ "special": true
1226
+ },
1227
+ "128153": {
1228
+ "content": "<|reserved_special_token_145|>",
1229
+ "lstrip": false,
1230
+ "normalized": false,
1231
+ "rstrip": false,
1232
+ "single_word": false,
1233
+ "special": true
1234
+ },
1235
+ "128154": {
1236
+ "content": "<|reserved_special_token_146|>",
1237
+ "lstrip": false,
1238
+ "normalized": false,
1239
+ "rstrip": false,
1240
+ "single_word": false,
1241
+ "special": true
1242
+ },
1243
+ "128155": {
1244
+ "content": "<|reserved_special_token_147|>",
1245
+ "lstrip": false,
1246
+ "normalized": false,
1247
+ "rstrip": false,
1248
+ "single_word": false,
1249
+ "special": true
1250
+ },
1251
+ "128156": {
1252
+ "content": "<|reserved_special_token_148|>",
1253
+ "lstrip": false,
1254
+ "normalized": false,
1255
+ "rstrip": false,
1256
+ "single_word": false,
1257
+ "special": true
1258
+ },
1259
+ "128157": {
1260
+ "content": "<|reserved_special_token_149|>",
1261
+ "lstrip": false,
1262
+ "normalized": false,
1263
+ "rstrip": false,
1264
+ "single_word": false,
1265
+ "special": true
1266
+ },
1267
+ "128158": {
1268
+ "content": "<|reserved_special_token_150|>",
1269
+ "lstrip": false,
1270
+ "normalized": false,
1271
+ "rstrip": false,
1272
+ "single_word": false,
1273
+ "special": true
1274
+ },
1275
+ "128159": {
1276
+ "content": "<|reserved_special_token_151|>",
1277
+ "lstrip": false,
1278
+ "normalized": false,
1279
+ "rstrip": false,
1280
+ "single_word": false,
1281
+ "special": true
1282
+ },
1283
+ "128160": {
1284
+ "content": "<|reserved_special_token_152|>",
1285
+ "lstrip": false,
1286
+ "normalized": false,
1287
+ "rstrip": false,
1288
+ "single_word": false,
1289
+ "special": true
1290
+ },
1291
+ "128161": {
1292
+ "content": "<|reserved_special_token_153|>",
1293
+ "lstrip": false,
1294
+ "normalized": false,
1295
+ "rstrip": false,
1296
+ "single_word": false,
1297
+ "special": true
1298
+ },
1299
+ "128162": {
1300
+ "content": "<|reserved_special_token_154|>",
1301
+ "lstrip": false,
1302
+ "normalized": false,
1303
+ "rstrip": false,
1304
+ "single_word": false,
1305
+ "special": true
1306
+ },
1307
+ "128163": {
1308
+ "content": "<|reserved_special_token_155|>",
1309
+ "lstrip": false,
1310
+ "normalized": false,
1311
+ "rstrip": false,
1312
+ "single_word": false,
1313
+ "special": true
1314
+ },
1315
+ "128164": {
1316
+ "content": "<|reserved_special_token_156|>",
1317
+ "lstrip": false,
1318
+ "normalized": false,
1319
+ "rstrip": false,
1320
+ "single_word": false,
1321
+ "special": true
1322
+ },
1323
+ "128165": {
1324
+ "content": "<|reserved_special_token_157|>",
1325
+ "lstrip": false,
1326
+ "normalized": false,
1327
+ "rstrip": false,
1328
+ "single_word": false,
1329
+ "special": true
1330
+ },
1331
+ "128166": {
1332
+ "content": "<|reserved_special_token_158|>",
1333
+ "lstrip": false,
1334
+ "normalized": false,
1335
+ "rstrip": false,
1336
+ "single_word": false,
1337
+ "special": true
1338
+ },
1339
+ "128167": {
1340
+ "content": "<|reserved_special_token_159|>",
1341
+ "lstrip": false,
1342
+ "normalized": false,
1343
+ "rstrip": false,
1344
+ "single_word": false,
1345
+ "special": true
1346
+ },
1347
+ "128168": {
1348
+ "content": "<|reserved_special_token_160|>",
1349
+ "lstrip": false,
1350
+ "normalized": false,
1351
+ "rstrip": false,
1352
+ "single_word": false,
1353
+ "special": true
1354
+ },
1355
+ "128169": {
1356
+ "content": "<|reserved_special_token_161|>",
1357
+ "lstrip": false,
1358
+ "normalized": false,
1359
+ "rstrip": false,
1360
+ "single_word": false,
1361
+ "special": true
1362
+ },
1363
+ "128170": {
1364
+ "content": "<|reserved_special_token_162|>",
1365
+ "lstrip": false,
1366
+ "normalized": false,
1367
+ "rstrip": false,
1368
+ "single_word": false,
1369
+ "special": true
1370
+ },
1371
+ "128171": {
1372
+ "content": "<|reserved_special_token_163|>",
1373
+ "lstrip": false,
1374
+ "normalized": false,
1375
+ "rstrip": false,
1376
+ "single_word": false,
1377
+ "special": true
1378
+ },
1379
+ "128172": {
1380
+ "content": "<|reserved_special_token_164|>",
1381
+ "lstrip": false,
1382
+ "normalized": false,
1383
+ "rstrip": false,
1384
+ "single_word": false,
1385
+ "special": true
1386
+ },
1387
+ "128173": {
1388
+ "content": "<|reserved_special_token_165|>",
1389
+ "lstrip": false,
1390
+ "normalized": false,
1391
+ "rstrip": false,
1392
+ "single_word": false,
1393
+ "special": true
1394
+ },
1395
+ "128174": {
1396
+ "content": "<|reserved_special_token_166|>",
1397
+ "lstrip": false,
1398
+ "normalized": false,
1399
+ "rstrip": false,
1400
+ "single_word": false,
1401
+ "special": true
1402
+ },
1403
+ "128175": {
1404
+ "content": "<|reserved_special_token_167|>",
1405
+ "lstrip": false,
1406
+ "normalized": false,
1407
+ "rstrip": false,
1408
+ "single_word": false,
1409
+ "special": true
1410
+ },
1411
+ "128176": {
1412
+ "content": "<|reserved_special_token_168|>",
1413
+ "lstrip": false,
1414
+ "normalized": false,
1415
+ "rstrip": false,
1416
+ "single_word": false,
1417
+ "special": true
1418
+ },
1419
+ "128177": {
1420
+ "content": "<|reserved_special_token_169|>",
1421
+ "lstrip": false,
1422
+ "normalized": false,
1423
+ "rstrip": false,
1424
+ "single_word": false,
1425
+ "special": true
1426
+ },
1427
+ "128178": {
1428
+ "content": "<|reserved_special_token_170|>",
1429
+ "lstrip": false,
1430
+ "normalized": false,
1431
+ "rstrip": false,
1432
+ "single_word": false,
1433
+ "special": true
1434
+ },
1435
+ "128179": {
1436
+ "content": "<|reserved_special_token_171|>",
1437
+ "lstrip": false,
1438
+ "normalized": false,
1439
+ "rstrip": false,
1440
+ "single_word": false,
1441
+ "special": true
1442
+ },
1443
+ "128180": {
1444
+ "content": "<|reserved_special_token_172|>",
1445
+ "lstrip": false,
1446
+ "normalized": false,
1447
+ "rstrip": false,
1448
+ "single_word": false,
1449
+ "special": true
1450
+ },
1451
+ "128181": {
1452
+ "content": "<|reserved_special_token_173|>",
1453
+ "lstrip": false,
1454
+ "normalized": false,
1455
+ "rstrip": false,
1456
+ "single_word": false,
1457
+ "special": true
1458
+ },
1459
+ "128182": {
1460
+ "content": "<|reserved_special_token_174|>",
1461
+ "lstrip": false,
1462
+ "normalized": false,
1463
+ "rstrip": false,
1464
+ "single_word": false,
1465
+ "special": true
1466
+ },
1467
+ "128183": {
1468
+ "content": "<|reserved_special_token_175|>",
1469
+ "lstrip": false,
1470
+ "normalized": false,
1471
+ "rstrip": false,
1472
+ "single_word": false,
1473
+ "special": true
1474
+ },
1475
+ "128184": {
1476
+ "content": "<|reserved_special_token_176|>",
1477
+ "lstrip": false,
1478
+ "normalized": false,
1479
+ "rstrip": false,
1480
+ "single_word": false,
1481
+ "special": true
1482
+ },
1483
+ "128185": {
1484
+ "content": "<|reserved_special_token_177|>",
1485
+ "lstrip": false,
1486
+ "normalized": false,
1487
+ "rstrip": false,
1488
+ "single_word": false,
1489
+ "special": true
1490
+ },
1491
+ "128186": {
1492
+ "content": "<|reserved_special_token_178|>",
1493
+ "lstrip": false,
1494
+ "normalized": false,
1495
+ "rstrip": false,
1496
+ "single_word": false,
1497
+ "special": true
1498
+ },
1499
+ "128187": {
1500
+ "content": "<|reserved_special_token_179|>",
1501
+ "lstrip": false,
1502
+ "normalized": false,
1503
+ "rstrip": false,
1504
+ "single_word": false,
1505
+ "special": true
1506
+ },
1507
+ "128188": {
1508
+ "content": "<|reserved_special_token_180|>",
1509
+ "lstrip": false,
1510
+ "normalized": false,
1511
+ "rstrip": false,
1512
+ "single_word": false,
1513
+ "special": true
1514
+ },
1515
+ "128189": {
1516
+ "content": "<|reserved_special_token_181|>",
1517
+ "lstrip": false,
1518
+ "normalized": false,
1519
+ "rstrip": false,
1520
+ "single_word": false,
1521
+ "special": true
1522
+ },
1523
+ "128190": {
1524
+ "content": "<|reserved_special_token_182|>",
1525
+ "lstrip": false,
1526
+ "normalized": false,
1527
+ "rstrip": false,
1528
+ "single_word": false,
1529
+ "special": true
1530
+ },
1531
+ "128191": {
1532
+ "content": "<|reserved_special_token_183|>",
1533
+ "lstrip": false,
1534
+ "normalized": false,
1535
+ "rstrip": false,
1536
+ "single_word": false,
1537
+ "special": true
1538
+ },
1539
+ "128192": {
1540
+ "content": "<|reserved_special_token_184|>",
1541
+ "lstrip": false,
1542
+ "normalized": false,
1543
+ "rstrip": false,
1544
+ "single_word": false,
1545
+ "special": true
1546
+ },
1547
+ "128193": {
1548
+ "content": "<|reserved_special_token_185|>",
1549
+ "lstrip": false,
1550
+ "normalized": false,
1551
+ "rstrip": false,
1552
+ "single_word": false,
1553
+ "special": true
1554
+ },
1555
+ "128194": {
1556
+ "content": "<|reserved_special_token_186|>",
1557
+ "lstrip": false,
1558
+ "normalized": false,
1559
+ "rstrip": false,
1560
+ "single_word": false,
1561
+ "special": true
1562
+ },
1563
+ "128195": {
1564
+ "content": "<|reserved_special_token_187|>",
1565
+ "lstrip": false,
1566
+ "normalized": false,
1567
+ "rstrip": false,
1568
+ "single_word": false,
1569
+ "special": true
1570
+ },
1571
+ "128196": {
1572
+ "content": "<|reserved_special_token_188|>",
1573
+ "lstrip": false,
1574
+ "normalized": false,
1575
+ "rstrip": false,
1576
+ "single_word": false,
1577
+ "special": true
1578
+ },
1579
+ "128197": {
1580
+ "content": "<|reserved_special_token_189|>",
1581
+ "lstrip": false,
1582
+ "normalized": false,
1583
+ "rstrip": false,
1584
+ "single_word": false,
1585
+ "special": true
1586
+ },
1587
+ "128198": {
1588
+ "content": "<|reserved_special_token_190|>",
1589
+ "lstrip": false,
1590
+ "normalized": false,
1591
+ "rstrip": false,
1592
+ "single_word": false,
1593
+ "special": true
1594
+ },
1595
+ "128199": {
1596
+ "content": "<|reserved_special_token_191|>",
1597
+ "lstrip": false,
1598
+ "normalized": false,
1599
+ "rstrip": false,
1600
+ "single_word": false,
1601
+ "special": true
1602
+ },
1603
+ "128200": {
1604
+ "content": "<|reserved_special_token_192|>",
1605
+ "lstrip": false,
1606
+ "normalized": false,
1607
+ "rstrip": false,
1608
+ "single_word": false,
1609
+ "special": true
1610
+ },
1611
+ "128201": {
1612
+ "content": "<|reserved_special_token_193|>",
1613
+ "lstrip": false,
1614
+ "normalized": false,
1615
+ "rstrip": false,
1616
+ "single_word": false,
1617
+ "special": true
1618
+ },
1619
+ "128202": {
1620
+ "content": "<|reserved_special_token_194|>",
1621
+ "lstrip": false,
1622
+ "normalized": false,
1623
+ "rstrip": false,
1624
+ "single_word": false,
1625
+ "special": true
1626
+ },
1627
+ "128203": {
1628
+ "content": "<|reserved_special_token_195|>",
1629
+ "lstrip": false,
1630
+ "normalized": false,
1631
+ "rstrip": false,
1632
+ "single_word": false,
1633
+ "special": true
1634
+ },
1635
+ "128204": {
1636
+ "content": "<|reserved_special_token_196|>",
1637
+ "lstrip": false,
1638
+ "normalized": false,
1639
+ "rstrip": false,
1640
+ "single_word": false,
1641
+ "special": true
1642
+ },
1643
+ "128205": {
1644
+ "content": "<|reserved_special_token_197|>",
1645
+ "lstrip": false,
1646
+ "normalized": false,
1647
+ "rstrip": false,
1648
+ "single_word": false,
1649
+ "special": true
1650
+ },
1651
+ "128206": {
1652
+ "content": "<|reserved_special_token_198|>",
1653
+ "lstrip": false,
1654
+ "normalized": false,
1655
+ "rstrip": false,
1656
+ "single_word": false,
1657
+ "special": true
1658
+ },
1659
+ "128207": {
1660
+ "content": "<|reserved_special_token_199|>",
1661
+ "lstrip": false,
1662
+ "normalized": false,
1663
+ "rstrip": false,
1664
+ "single_word": false,
1665
+ "special": true
1666
+ },
1667
+ "128208": {
1668
+ "content": "<|reserved_special_token_200|>",
1669
+ "lstrip": false,
1670
+ "normalized": false,
1671
+ "rstrip": false,
1672
+ "single_word": false,
1673
+ "special": true
1674
+ },
1675
+ "128209": {
1676
+ "content": "<|reserved_special_token_201|>",
1677
+ "lstrip": false,
1678
+ "normalized": false,
1679
+ "rstrip": false,
1680
+ "single_word": false,
1681
+ "special": true
1682
+ },
1683
+ "128210": {
1684
+ "content": "<|reserved_special_token_202|>",
1685
+ "lstrip": false,
1686
+ "normalized": false,
1687
+ "rstrip": false,
1688
+ "single_word": false,
1689
+ "special": true
1690
+ },
1691
+ "128211": {
1692
+ "content": "<|reserved_special_token_203|>",
1693
+ "lstrip": false,
1694
+ "normalized": false,
1695
+ "rstrip": false,
1696
+ "single_word": false,
1697
+ "special": true
1698
+ },
1699
+ "128212": {
1700
+ "content": "<|reserved_special_token_204|>",
1701
+ "lstrip": false,
1702
+ "normalized": false,
1703
+ "rstrip": false,
1704
+ "single_word": false,
1705
+ "special": true
1706
+ },
1707
+ "128213": {
1708
+ "content": "<|reserved_special_token_205|>",
1709
+ "lstrip": false,
1710
+ "normalized": false,
1711
+ "rstrip": false,
1712
+ "single_word": false,
1713
+ "special": true
1714
+ },
1715
+ "128214": {
1716
+ "content": "<|reserved_special_token_206|>",
1717
+ "lstrip": false,
1718
+ "normalized": false,
1719
+ "rstrip": false,
1720
+ "single_word": false,
1721
+ "special": true
1722
+ },
1723
+ "128215": {
1724
+ "content": "<|reserved_special_token_207|>",
1725
+ "lstrip": false,
1726
+ "normalized": false,
1727
+ "rstrip": false,
1728
+ "single_word": false,
1729
+ "special": true
1730
+ },
1731
+ "128216": {
1732
+ "content": "<|reserved_special_token_208|>",
1733
+ "lstrip": false,
1734
+ "normalized": false,
1735
+ "rstrip": false,
1736
+ "single_word": false,
1737
+ "special": true
1738
+ },
1739
+ "128217": {
1740
+ "content": "<|reserved_special_token_209|>",
1741
+ "lstrip": false,
1742
+ "normalized": false,
1743
+ "rstrip": false,
1744
+ "single_word": false,
1745
+ "special": true
1746
+ },
1747
+ "128218": {
1748
+ "content": "<|reserved_special_token_210|>",
1749
+ "lstrip": false,
1750
+ "normalized": false,
1751
+ "rstrip": false,
1752
+ "single_word": false,
1753
+ "special": true
1754
+ },
1755
+ "128219": {
1756
+ "content": "<|reserved_special_token_211|>",
1757
+ "lstrip": false,
1758
+ "normalized": false,
1759
+ "rstrip": false,
1760
+ "single_word": false,
1761
+ "special": true
1762
+ },
1763
+ "128220": {
1764
+ "content": "<|reserved_special_token_212|>",
1765
+ "lstrip": false,
1766
+ "normalized": false,
1767
+ "rstrip": false,
1768
+ "single_word": false,
1769
+ "special": true
1770
+ },
1771
+ "128221": {
1772
+ "content": "<|reserved_special_token_213|>",
1773
+ "lstrip": false,
1774
+ "normalized": false,
1775
+ "rstrip": false,
1776
+ "single_word": false,
1777
+ "special": true
1778
+ },
1779
+ "128222": {
1780
+ "content": "<|reserved_special_token_214|>",
1781
+ "lstrip": false,
1782
+ "normalized": false,
1783
+ "rstrip": false,
1784
+ "single_word": false,
1785
+ "special": true
1786
+ },
1787
+ "128223": {
1788
+ "content": "<|reserved_special_token_215|>",
1789
+ "lstrip": false,
1790
+ "normalized": false,
1791
+ "rstrip": false,
1792
+ "single_word": false,
1793
+ "special": true
1794
+ },
1795
+ "128224": {
1796
+ "content": "<|reserved_special_token_216|>",
1797
+ "lstrip": false,
1798
+ "normalized": false,
1799
+ "rstrip": false,
1800
+ "single_word": false,
1801
+ "special": true
1802
+ },
1803
+ "128225": {
1804
+ "content": "<|reserved_special_token_217|>",
1805
+ "lstrip": false,
1806
+ "normalized": false,
1807
+ "rstrip": false,
1808
+ "single_word": false,
1809
+ "special": true
1810
+ },
1811
+ "128226": {
1812
+ "content": "<|reserved_special_token_218|>",
1813
+ "lstrip": false,
1814
+ "normalized": false,
1815
+ "rstrip": false,
1816
+ "single_word": false,
1817
+ "special": true
1818
+ },
1819
+ "128227": {
1820
+ "content": "<|reserved_special_token_219|>",
1821
+ "lstrip": false,
1822
+ "normalized": false,
1823
+ "rstrip": false,
1824
+ "single_word": false,
1825
+ "special": true
1826
+ },
1827
+ "128228": {
1828
+ "content": "<|reserved_special_token_220|>",
1829
+ "lstrip": false,
1830
+ "normalized": false,
1831
+ "rstrip": false,
1832
+ "single_word": false,
1833
+ "special": true
1834
+ },
1835
+ "128229": {
1836
+ "content": "<|reserved_special_token_221|>",
1837
+ "lstrip": false,
1838
+ "normalized": false,
1839
+ "rstrip": false,
1840
+ "single_word": false,
1841
+ "special": true
1842
+ },
1843
+ "128230": {
1844
+ "content": "<|reserved_special_token_222|>",
1845
+ "lstrip": false,
1846
+ "normalized": false,
1847
+ "rstrip": false,
1848
+ "single_word": false,
1849
+ "special": true
1850
+ },
1851
+ "128231": {
1852
+ "content": "<|reserved_special_token_223|>",
1853
+ "lstrip": false,
1854
+ "normalized": false,
1855
+ "rstrip": false,
1856
+ "single_word": false,
1857
+ "special": true
1858
+ },
1859
+ "128232": {
1860
+ "content": "<|reserved_special_token_224|>",
1861
+ "lstrip": false,
1862
+ "normalized": false,
1863
+ "rstrip": false,
1864
+ "single_word": false,
1865
+ "special": true
1866
+ },
1867
+ "128233": {
1868
+ "content": "<|reserved_special_token_225|>",
1869
+ "lstrip": false,
1870
+ "normalized": false,
1871
+ "rstrip": false,
1872
+ "single_word": false,
1873
+ "special": true
1874
+ },
1875
+ "128234": {
1876
+ "content": "<|reserved_special_token_226|>",
1877
+ "lstrip": false,
1878
+ "normalized": false,
1879
+ "rstrip": false,
1880
+ "single_word": false,
1881
+ "special": true
1882
+ },
1883
+ "128235": {
1884
+ "content": "<|reserved_special_token_227|>",
1885
+ "lstrip": false,
1886
+ "normalized": false,
1887
+ "rstrip": false,
1888
+ "single_word": false,
1889
+ "special": true
1890
+ },
1891
+ "128236": {
1892
+ "content": "<|reserved_special_token_228|>",
1893
+ "lstrip": false,
1894
+ "normalized": false,
1895
+ "rstrip": false,
1896
+ "single_word": false,
1897
+ "special": true
1898
+ },
1899
+ "128237": {
1900
+ "content": "<|reserved_special_token_229|>",
1901
+ "lstrip": false,
1902
+ "normalized": false,
1903
+ "rstrip": false,
1904
+ "single_word": false,
1905
+ "special": true
1906
+ },
1907
+ "128238": {
1908
+ "content": "<|reserved_special_token_230|>",
1909
+ "lstrip": false,
1910
+ "normalized": false,
1911
+ "rstrip": false,
1912
+ "single_word": false,
1913
+ "special": true
1914
+ },
1915
+ "128239": {
1916
+ "content": "<|reserved_special_token_231|>",
1917
+ "lstrip": false,
1918
+ "normalized": false,
1919
+ "rstrip": false,
1920
+ "single_word": false,
1921
+ "special": true
1922
+ },
1923
+ "128240": {
1924
+ "content": "<|reserved_special_token_232|>",
1925
+ "lstrip": false,
1926
+ "normalized": false,
1927
+ "rstrip": false,
1928
+ "single_word": false,
1929
+ "special": true
1930
+ },
1931
+ "128241": {
1932
+ "content": "<|reserved_special_token_233|>",
1933
+ "lstrip": false,
1934
+ "normalized": false,
1935
+ "rstrip": false,
1936
+ "single_word": false,
1937
+ "special": true
1938
+ },
1939
+ "128242": {
1940
+ "content": "<|reserved_special_token_234|>",
1941
+ "lstrip": false,
1942
+ "normalized": false,
1943
+ "rstrip": false,
1944
+ "single_word": false,
1945
+ "special": true
1946
+ },
1947
+ "128243": {
1948
+ "content": "<|reserved_special_token_235|>",
1949
+ "lstrip": false,
1950
+ "normalized": false,
1951
+ "rstrip": false,
1952
+ "single_word": false,
1953
+ "special": true
1954
+ },
1955
+ "128244": {
1956
+ "content": "<|reserved_special_token_236|>",
1957
+ "lstrip": false,
1958
+ "normalized": false,
1959
+ "rstrip": false,
1960
+ "single_word": false,
1961
+ "special": true
1962
+ },
1963
+ "128245": {
1964
+ "content": "<|reserved_special_token_237|>",
1965
+ "lstrip": false,
1966
+ "normalized": false,
1967
+ "rstrip": false,
1968
+ "single_word": false,
1969
+ "special": true
1970
+ },
1971
+ "128246": {
1972
+ "content": "<|reserved_special_token_238|>",
1973
+ "lstrip": false,
1974
+ "normalized": false,
1975
+ "rstrip": false,
1976
+ "single_word": false,
1977
+ "special": true
1978
+ },
1979
+ "128247": {
1980
+ "content": "<|reserved_special_token_239|>",
1981
+ "lstrip": false,
1982
+ "normalized": false,
1983
+ "rstrip": false,
1984
+ "single_word": false,
1985
+ "special": true
1986
+ },
1987
+ "128248": {
1988
+ "content": "<|reserved_special_token_240|>",
1989
+ "lstrip": false,
1990
+ "normalized": false,
1991
+ "rstrip": false,
1992
+ "single_word": false,
1993
+ "special": true
1994
+ },
1995
+ "128249": {
1996
+ "content": "<|reserved_special_token_241|>",
1997
+ "lstrip": false,
1998
+ "normalized": false,
1999
+ "rstrip": false,
2000
+ "single_word": false,
2001
+ "special": true
2002
+ },
2003
+ "128250": {
2004
+ "content": "<|reserved_special_token_242|>",
2005
+ "lstrip": false,
2006
+ "normalized": false,
2007
+ "rstrip": false,
2008
+ "single_word": false,
2009
+ "special": true
2010
+ },
2011
+ "128251": {
2012
+ "content": "<|reserved_special_token_243|>",
2013
+ "lstrip": false,
2014
+ "normalized": false,
2015
+ "rstrip": false,
2016
+ "single_word": false,
2017
+ "special": true
2018
+ },
2019
+ "128252": {
2020
+ "content": "<|reserved_special_token_244|>",
2021
+ "lstrip": false,
2022
+ "normalized": false,
2023
+ "rstrip": false,
2024
+ "single_word": false,
2025
+ "special": true
2026
+ },
2027
+ "128253": {
2028
+ "content": "<|reserved_special_token_245|>",
2029
+ "lstrip": false,
2030
+ "normalized": false,
2031
+ "rstrip": false,
2032
+ "single_word": false,
2033
+ "special": true
2034
+ },
2035
+ "128254": {
2036
+ "content": "<|reserved_special_token_246|>",
2037
+ "lstrip": false,
2038
+ "normalized": false,
2039
+ "rstrip": false,
2040
+ "single_word": false,
2041
+ "special": true
2042
+ },
2043
+ "128255": {
2044
+ "content": "<|reserved_special_token_247|>",
2045
+ "lstrip": false,
2046
+ "normalized": false,
2047
+ "rstrip": false,
2048
+ "single_word": false,
2049
+ "special": true
2050
+ }
2051
+ },
2052
+ "bos_token": "<|begin_of_text|>",
2053
+ "chat_template": "{{- bos_token }}\n{%- if custom_tools is defined %}\n {%- set tools = custom_tools %}\n{%- endif %}\n{%- if not tools_in_user_message is defined %}\n {%- set tools_in_user_message = true %}\n{%- endif %}\n{%- if not date_string is defined %}\n {%- set date_string = \"26 Jul 2024\" %}\n{%- endif %}\n{%- if not tools is defined %}\n {%- set tools = none %}\n{%- endif %}\n\n{#- This block extracts the system message, so we can slot it into the right place. #}\n{%- if messages[0]['role'] == 'system' %}\n {%- set system_message = messages[0]['content']|trim %}\n {%- set messages = messages[1:] %}\n{%- else %}\n {%- set system_message = \"\" %}\n{%- endif %}\n\n{#- System message + builtin tools #}\n{{- \"<|start_header_id|>system<|end_header_id|>\\n\\n\" }}\n{%- if builtin_tools is defined or tools is not none %}\n {{- \"Environment: ipython\\n\" }}\n{%- endif %}\n{%- if builtin_tools is defined %}\n {{- \"Tools: \" + builtin_tools | reject('equalto', 'code_interpreter') | join(\", \") + \"\\n\\n\"}}\n{%- endif %}\n{{- \"Cutting Knowledge Date: December 2023\\n\" }}\n{{- \"Today Date: \" + date_string + \"\\n\\n\" }}\n{%- if tools is not none and not tools_in_user_message %}\n {{- \"You have access to the following functions. To call a function, please respond with JSON for a function call.\" }}\n {{- 'Respond in the format {\"name\": function name, \"parameters\": dictionary of argument name and its value}.' }}\n {{- \"Do not use variables.\\n\\n\" }}\n {%- for t in tools %}\n {{- t | tojson(indent=4) }}\n {{- \"\\n\\n\" }}\n {%- endfor %}\n{%- endif %}\n{{- system_message }}\n{{- \"<|eot_id|>\" }}\n\n{#- Custom tools are passed in a user message with some extra guidance #}\n{%- if tools_in_user_message and not tools is none %}\n {#- Extract the first user message so we can plug it in here #}\n {%- if messages | length != 0 %}\n {%- set first_user_message = messages[0]['content']|trim %}\n {%- set messages = messages[1:] %}\n {%- else %}\n {{- raise_exception(\"Cannot put tools in the first user message when there's no first user message!\") }}\n{%- endif %}\n {{- '<|start_header_id|>user<|end_header_id|>\\n\\n' -}}\n {{- \"Given the following functions, please respond with a JSON for a function call \" }}\n {{- \"with its proper arguments that best answers the given prompt.\\n\\n\" }}\n {{- 'Respond in the format {\"name\": function name, \"parameters\": dictionary of argument name and its value}.' }}\n {{- \"Do not use variables.\\n\\n\" }}\n {%- for t in tools %}\n {{- t | tojson(indent=4) }}\n {{- \"\\n\\n\" }}\n {%- endfor %}\n {{- first_user_message + \"<|eot_id|>\"}}\n{%- endif %}\n\n{%- for message in messages %}\n {%- if not (message.role == 'ipython' or message.role == 'tool' or 'tool_calls' in message) %}\n {{- '<|start_header_id|>' + message['role'] + '<|end_header_id|>\\n\\n'+ message['content'] | trim + '<|eot_id|>' }}\n {%- elif 'tool_calls' in message %}\n {%- if not message.tool_calls|length == 1 %}\n {{- raise_exception(\"This model only supports single tool-calls at once!\") }}\n {%- endif %}\n {%- set tool_call = message.tool_calls[0].function %}\n {%- if builtin_tools is defined and tool_call.name in builtin_tools %}\n {{- '<|start_header_id|>assistant<|end_header_id|>\\n\\n' -}}\n {{- \"<|python_tag|>\" + tool_call.name + \".call(\" }}\n {%- for arg_name, arg_val in tool_call.arguments | items %}\n {{- arg_name + '=\"' + arg_val + '\"' }}\n {%- if not loop.last %}\n {{- \", \" }}\n {%- endif %}\n {%- endfor %}\n {{- \")\" }}\n {%- else %}\n {{- '<|start_header_id|>assistant<|end_header_id|>\\n\\n' -}}\n {{- '{\"name\": \"' + tool_call.name + '\", ' }}\n {{- '\"parameters\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- \"}\" }}\n {%- endif %}\n {%- if builtin_tools is defined %}\n {#- This means we're in ipython mode #}\n {{- \"<|eom_id|>\" }}\n {%- else %}\n {{- \"<|eot_id|>\" }}\n {%- endif %}\n {%- elif message.role == \"tool\" or message.role == \"ipython\" %}\n {{- \"<|start_header_id|>ipython<|end_header_id|>\\n\\n\" }}\n {%- if message.content is mapping or message.content is iterable %}\n {{- message.content | tojson }}\n {%- else %}\n {{- message.content }}\n {%- endif %}\n {{- \"<|eot_id|>\" }}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|start_header_id|>assistant<|end_header_id|>\\n\\n' }}\n{%- endif %}\n",
2054
+ "clean_up_tokenization_spaces": true,
2055
+ "eos_token": "<|eot_id|>",
2056
+ "extra_special_tokens": {},
2057
+ "model_input_names": [
2058
+ "input_ids",
2059
+ "attention_mask"
2060
+ ],
2061
+ "model_max_length": 131072,
2062
+ "pad_token": "<|finetune_right_pad_id|>",
2063
+ "tokenizer_class": "PreTrainedTokenizerFast"
2064
+ }
checkpoint-512/trainer_state.json ADDED
@@ -0,0 +1,3617 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 1.0,
5
+ "eval_steps": 500,
6
+ "global_step": 512,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.001953125,
13
+ "grad_norm": 2.2842363876082494,
14
+ "learning_rate": 1.0000000000000002e-06,
15
+ "loss": 1.7076,
16
+ "step": 1
17
+ },
18
+ {
19
+ "epoch": 0.00390625,
20
+ "grad_norm": 2.317015212334916,
21
+ "learning_rate": 2.0000000000000003e-06,
22
+ "loss": 1.6296,
23
+ "step": 2
24
+ },
25
+ {
26
+ "epoch": 0.005859375,
27
+ "grad_norm": 2.0835939653262883,
28
+ "learning_rate": 3e-06,
29
+ "loss": 1.5593,
30
+ "step": 3
31
+ },
32
+ {
33
+ "epoch": 0.0078125,
34
+ "grad_norm": 2.1357657121975797,
35
+ "learning_rate": 4.000000000000001e-06,
36
+ "loss": 1.6713,
37
+ "step": 4
38
+ },
39
+ {
40
+ "epoch": 0.009765625,
41
+ "grad_norm": 2.0362735997756847,
42
+ "learning_rate": 5e-06,
43
+ "loss": 1.5327,
44
+ "step": 5
45
+ },
46
+ {
47
+ "epoch": 0.01171875,
48
+ "grad_norm": 2.1597413317388523,
49
+ "learning_rate": 6e-06,
50
+ "loss": 1.6435,
51
+ "step": 6
52
+ },
53
+ {
54
+ "epoch": 0.013671875,
55
+ "grad_norm": 2.1354234831872616,
56
+ "learning_rate": 7e-06,
57
+ "loss": 1.539,
58
+ "step": 7
59
+ },
60
+ {
61
+ "epoch": 0.015625,
62
+ "grad_norm": 2.0222980997885682,
63
+ "learning_rate": 8.000000000000001e-06,
64
+ "loss": 1.491,
65
+ "step": 8
66
+ },
67
+ {
68
+ "epoch": 0.017578125,
69
+ "grad_norm": 1.8336578914749888,
70
+ "learning_rate": 9e-06,
71
+ "loss": 1.567,
72
+ "step": 9
73
+ },
74
+ {
75
+ "epoch": 0.01953125,
76
+ "grad_norm": 1.7535364548043673,
77
+ "learning_rate": 1e-05,
78
+ "loss": 1.5181,
79
+ "step": 10
80
+ },
81
+ {
82
+ "epoch": 0.021484375,
83
+ "grad_norm": 1.348232072077207,
84
+ "learning_rate": 1.1000000000000001e-05,
85
+ "loss": 1.4633,
86
+ "step": 11
87
+ },
88
+ {
89
+ "epoch": 0.0234375,
90
+ "grad_norm": 1.079057032053978,
91
+ "learning_rate": 1.2e-05,
92
+ "loss": 1.36,
93
+ "step": 12
94
+ },
95
+ {
96
+ "epoch": 0.025390625,
97
+ "grad_norm": 0.7143765277543237,
98
+ "learning_rate": 1.3000000000000001e-05,
99
+ "loss": 1.3195,
100
+ "step": 13
101
+ },
102
+ {
103
+ "epoch": 0.02734375,
104
+ "grad_norm": 0.8120880164824964,
105
+ "learning_rate": 1.4e-05,
106
+ "loss": 1.3469,
107
+ "step": 14
108
+ },
109
+ {
110
+ "epoch": 0.029296875,
111
+ "grad_norm": 0.6746494578904082,
112
+ "learning_rate": 1.5000000000000002e-05,
113
+ "loss": 1.3626,
114
+ "step": 15
115
+ },
116
+ {
117
+ "epoch": 0.03125,
118
+ "grad_norm": 0.9663545707089416,
119
+ "learning_rate": 1.6000000000000003e-05,
120
+ "loss": 1.2772,
121
+ "step": 16
122
+ },
123
+ {
124
+ "epoch": 0.033203125,
125
+ "grad_norm": 0.961439588523319,
126
+ "learning_rate": 1.7e-05,
127
+ "loss": 1.2911,
128
+ "step": 17
129
+ },
130
+ {
131
+ "epoch": 0.03515625,
132
+ "grad_norm": 1.1738444068957379,
133
+ "learning_rate": 1.8e-05,
134
+ "loss": 1.3346,
135
+ "step": 18
136
+ },
137
+ {
138
+ "epoch": 0.037109375,
139
+ "grad_norm": 1.2332387671295317,
140
+ "learning_rate": 1.9e-05,
141
+ "loss": 1.3761,
142
+ "step": 19
143
+ },
144
+ {
145
+ "epoch": 0.0390625,
146
+ "grad_norm": 1.268714744941341,
147
+ "learning_rate": 2e-05,
148
+ "loss": 1.3042,
149
+ "step": 20
150
+ },
151
+ {
152
+ "epoch": 0.041015625,
153
+ "grad_norm": 1.078415802927275,
154
+ "learning_rate": 2.1000000000000002e-05,
155
+ "loss": 1.2102,
156
+ "step": 21
157
+ },
158
+ {
159
+ "epoch": 0.04296875,
160
+ "grad_norm": 1.330999136602917,
161
+ "learning_rate": 2.2000000000000003e-05,
162
+ "loss": 1.2755,
163
+ "step": 22
164
+ },
165
+ {
166
+ "epoch": 0.044921875,
167
+ "grad_norm": 0.7130882289363479,
168
+ "learning_rate": 2.3e-05,
169
+ "loss": 1.1706,
170
+ "step": 23
171
+ },
172
+ {
173
+ "epoch": 0.046875,
174
+ "grad_norm": 0.5729960230193528,
175
+ "learning_rate": 2.4e-05,
176
+ "loss": 1.3215,
177
+ "step": 24
178
+ },
179
+ {
180
+ "epoch": 0.048828125,
181
+ "grad_norm": 0.6125271472968751,
182
+ "learning_rate": 2.5e-05,
183
+ "loss": 1.3213,
184
+ "step": 25
185
+ },
186
+ {
187
+ "epoch": 0.05078125,
188
+ "grad_norm": 0.6108864130655043,
189
+ "learning_rate": 2.6000000000000002e-05,
190
+ "loss": 1.2865,
191
+ "step": 26
192
+ },
193
+ {
194
+ "epoch": 0.052734375,
195
+ "grad_norm": 0.6479528408256864,
196
+ "learning_rate": 2.7000000000000002e-05,
197
+ "loss": 1.3383,
198
+ "step": 27
199
+ },
200
+ {
201
+ "epoch": 0.0546875,
202
+ "grad_norm": 0.8412108818700305,
203
+ "learning_rate": 2.8e-05,
204
+ "loss": 1.2763,
205
+ "step": 28
206
+ },
207
+ {
208
+ "epoch": 0.056640625,
209
+ "grad_norm": 0.8629612077288169,
210
+ "learning_rate": 2.9e-05,
211
+ "loss": 1.3045,
212
+ "step": 29
213
+ },
214
+ {
215
+ "epoch": 0.05859375,
216
+ "grad_norm": 0.7600858737745863,
217
+ "learning_rate": 3.0000000000000004e-05,
218
+ "loss": 1.2352,
219
+ "step": 30
220
+ },
221
+ {
222
+ "epoch": 0.060546875,
223
+ "grad_norm": 0.7130629485255873,
224
+ "learning_rate": 3.1e-05,
225
+ "loss": 1.2299,
226
+ "step": 31
227
+ },
228
+ {
229
+ "epoch": 0.0625,
230
+ "grad_norm": 0.5912964724458128,
231
+ "learning_rate": 3.2000000000000005e-05,
232
+ "loss": 1.2234,
233
+ "step": 32
234
+ },
235
+ {
236
+ "epoch": 0.064453125,
237
+ "grad_norm": 0.5368820032381596,
238
+ "learning_rate": 3.3e-05,
239
+ "loss": 1.1934,
240
+ "step": 33
241
+ },
242
+ {
243
+ "epoch": 0.06640625,
244
+ "grad_norm": 0.5570421986755116,
245
+ "learning_rate": 3.4e-05,
246
+ "loss": 1.2581,
247
+ "step": 34
248
+ },
249
+ {
250
+ "epoch": 0.068359375,
251
+ "grad_norm": 0.46598864760360764,
252
+ "learning_rate": 3.5000000000000004e-05,
253
+ "loss": 1.2535,
254
+ "step": 35
255
+ },
256
+ {
257
+ "epoch": 0.0703125,
258
+ "grad_norm": 0.6392299897042107,
259
+ "learning_rate": 3.6e-05,
260
+ "loss": 1.2331,
261
+ "step": 36
262
+ },
263
+ {
264
+ "epoch": 0.072265625,
265
+ "grad_norm": 0.49983937474417145,
266
+ "learning_rate": 3.7000000000000005e-05,
267
+ "loss": 1.2432,
268
+ "step": 37
269
+ },
270
+ {
271
+ "epoch": 0.07421875,
272
+ "grad_norm": 0.652858138736506,
273
+ "learning_rate": 3.8e-05,
274
+ "loss": 1.2759,
275
+ "step": 38
276
+ },
277
+ {
278
+ "epoch": 0.076171875,
279
+ "grad_norm": 0.5926189930170476,
280
+ "learning_rate": 3.9e-05,
281
+ "loss": 1.3016,
282
+ "step": 39
283
+ },
284
+ {
285
+ "epoch": 0.078125,
286
+ "grad_norm": 0.6646763351870284,
287
+ "learning_rate": 4e-05,
288
+ "loss": 1.344,
289
+ "step": 40
290
+ },
291
+ {
292
+ "epoch": 0.080078125,
293
+ "grad_norm": 0.6228429864196855,
294
+ "learning_rate": 3.99998980683206e-05,
295
+ "loss": 1.2794,
296
+ "step": 41
297
+ },
298
+ {
299
+ "epoch": 0.08203125,
300
+ "grad_norm": 0.5633101870154669,
301
+ "learning_rate": 3.9999592274321385e-05,
302
+ "loss": 1.2931,
303
+ "step": 42
304
+ },
305
+ {
306
+ "epoch": 0.083984375,
307
+ "grad_norm": 0.6866774046182069,
308
+ "learning_rate": 3.999908262111937e-05,
309
+ "loss": 1.2647,
310
+ "step": 43
311
+ },
312
+ {
313
+ "epoch": 0.0859375,
314
+ "grad_norm": 0.5312790576505163,
315
+ "learning_rate": 3.9998369113909555e-05,
316
+ "loss": 1.2255,
317
+ "step": 44
318
+ },
319
+ {
320
+ "epoch": 0.087890625,
321
+ "grad_norm": 0.5694229658922494,
322
+ "learning_rate": 3.999745175996481e-05,
323
+ "loss": 1.3104,
324
+ "step": 45
325
+ },
326
+ {
327
+ "epoch": 0.08984375,
328
+ "grad_norm": 0.5068013674566277,
329
+ "learning_rate": 3.999633056863589e-05,
330
+ "loss": 1.1771,
331
+ "step": 46
332
+ },
333
+ {
334
+ "epoch": 0.091796875,
335
+ "grad_norm": 0.5428027277075501,
336
+ "learning_rate": 3.999500555135129e-05,
337
+ "loss": 1.3508,
338
+ "step": 47
339
+ },
340
+ {
341
+ "epoch": 0.09375,
342
+ "grad_norm": 0.4792441915562371,
343
+ "learning_rate": 3.999347672161713e-05,
344
+ "loss": 1.1144,
345
+ "step": 48
346
+ },
347
+ {
348
+ "epoch": 0.095703125,
349
+ "grad_norm": 0.5033945174929487,
350
+ "learning_rate": 3.999174409501703e-05,
351
+ "loss": 1.1474,
352
+ "step": 49
353
+ },
354
+ {
355
+ "epoch": 0.09765625,
356
+ "grad_norm": 0.5609150975698594,
357
+ "learning_rate": 3.9989807689211946e-05,
358
+ "loss": 1.2558,
359
+ "step": 50
360
+ },
361
+ {
362
+ "epoch": 0.099609375,
363
+ "grad_norm": 0.5558707293914855,
364
+ "learning_rate": 3.998766752393998e-05,
365
+ "loss": 1.1411,
366
+ "step": 51
367
+ },
368
+ {
369
+ "epoch": 0.1015625,
370
+ "grad_norm": 0.4429585853749615,
371
+ "learning_rate": 3.99853236210162e-05,
372
+ "loss": 1.1715,
373
+ "step": 52
374
+ },
375
+ {
376
+ "epoch": 0.103515625,
377
+ "grad_norm": 0.5064052852591816,
378
+ "learning_rate": 3.998277600433241e-05,
379
+ "loss": 1.2018,
380
+ "step": 53
381
+ },
382
+ {
383
+ "epoch": 0.10546875,
384
+ "grad_norm": 0.526020419983389,
385
+ "learning_rate": 3.998002469985688e-05,
386
+ "loss": 1.1164,
387
+ "step": 54
388
+ },
389
+ {
390
+ "epoch": 0.107421875,
391
+ "grad_norm": 0.504222879676158,
392
+ "learning_rate": 3.997706973563413e-05,
393
+ "loss": 1.191,
394
+ "step": 55
395
+ },
396
+ {
397
+ "epoch": 0.109375,
398
+ "grad_norm": 0.5614145336635687,
399
+ "learning_rate": 3.9973911141784605e-05,
400
+ "loss": 1.3011,
401
+ "step": 56
402
+ },
403
+ {
404
+ "epoch": 0.111328125,
405
+ "grad_norm": 0.4391770801146478,
406
+ "learning_rate": 3.997054895050437e-05,
407
+ "loss": 1.2535,
408
+ "step": 57
409
+ },
410
+ {
411
+ "epoch": 0.11328125,
412
+ "grad_norm": 0.5583307267784473,
413
+ "learning_rate": 3.996698319606482e-05,
414
+ "loss": 1.153,
415
+ "step": 58
416
+ },
417
+ {
418
+ "epoch": 0.115234375,
419
+ "grad_norm": 0.4576133947689655,
420
+ "learning_rate": 3.996321391481229e-05,
421
+ "loss": 1.1564,
422
+ "step": 59
423
+ },
424
+ {
425
+ "epoch": 0.1171875,
426
+ "grad_norm": 0.41970646962377184,
427
+ "learning_rate": 3.995924114516769e-05,
428
+ "loss": 1.1935,
429
+ "step": 60
430
+ },
431
+ {
432
+ "epoch": 0.119140625,
433
+ "grad_norm": 0.44805324266797203,
434
+ "learning_rate": 3.995506492762613e-05,
435
+ "loss": 1.1339,
436
+ "step": 61
437
+ },
438
+ {
439
+ "epoch": 0.12109375,
440
+ "grad_norm": 0.5208068893189155,
441
+ "learning_rate": 3.9950685304756494e-05,
442
+ "loss": 1.2092,
443
+ "step": 62
444
+ },
445
+ {
446
+ "epoch": 0.123046875,
447
+ "grad_norm": 0.44195618774115664,
448
+ "learning_rate": 3.994610232120101e-05,
449
+ "loss": 1.1292,
450
+ "step": 63
451
+ },
452
+ {
453
+ "epoch": 0.125,
454
+ "grad_norm": 0.4514887790554273,
455
+ "learning_rate": 3.994131602367481e-05,
456
+ "loss": 1.1658,
457
+ "step": 64
458
+ },
459
+ {
460
+ "epoch": 0.126953125,
461
+ "grad_norm": 0.5908686231033371,
462
+ "learning_rate": 3.9936326460965423e-05,
463
+ "loss": 1.2076,
464
+ "step": 65
465
+ },
466
+ {
467
+ "epoch": 0.12890625,
468
+ "grad_norm": 0.46799815417666174,
469
+ "learning_rate": 3.99311336839323e-05,
470
+ "loss": 1.1889,
471
+ "step": 66
472
+ },
473
+ {
474
+ "epoch": 0.130859375,
475
+ "grad_norm": 0.45939729407525115,
476
+ "learning_rate": 3.992573774550629e-05,
477
+ "loss": 1.1704,
478
+ "step": 67
479
+ },
480
+ {
481
+ "epoch": 0.1328125,
482
+ "grad_norm": 0.4142175477343616,
483
+ "learning_rate": 3.9920138700689095e-05,
484
+ "loss": 1.1848,
485
+ "step": 68
486
+ },
487
+ {
488
+ "epoch": 0.134765625,
489
+ "grad_norm": 0.37685838553537837,
490
+ "learning_rate": 3.991433660655273e-05,
491
+ "loss": 1.1041,
492
+ "step": 69
493
+ },
494
+ {
495
+ "epoch": 0.13671875,
496
+ "grad_norm": 0.39832807246827023,
497
+ "learning_rate": 3.99083315222389e-05,
498
+ "loss": 1.2002,
499
+ "step": 70
500
+ },
501
+ {
502
+ "epoch": 0.138671875,
503
+ "grad_norm": 0.43218323629933336,
504
+ "learning_rate": 3.990212350895845e-05,
505
+ "loss": 1.1487,
506
+ "step": 71
507
+ },
508
+ {
509
+ "epoch": 0.140625,
510
+ "grad_norm": 0.43302460007599547,
511
+ "learning_rate": 3.98957126299907e-05,
512
+ "loss": 1.1638,
513
+ "step": 72
514
+ },
515
+ {
516
+ "epoch": 0.142578125,
517
+ "grad_norm": 0.41150363252077565,
518
+ "learning_rate": 3.988909895068281e-05,
519
+ "loss": 1.1353,
520
+ "step": 73
521
+ },
522
+ {
523
+ "epoch": 0.14453125,
524
+ "grad_norm": 0.4362254605938381,
525
+ "learning_rate": 3.988228253844913e-05,
526
+ "loss": 1.2202,
527
+ "step": 74
528
+ },
529
+ {
530
+ "epoch": 0.146484375,
531
+ "grad_norm": 0.4696684841153936,
532
+ "learning_rate": 3.987526346277049e-05,
533
+ "loss": 1.1722,
534
+ "step": 75
535
+ },
536
+ {
537
+ "epoch": 0.1484375,
538
+ "grad_norm": 0.42274900639715757,
539
+ "learning_rate": 3.9868041795193505e-05,
540
+ "loss": 1.179,
541
+ "step": 76
542
+ },
543
+ {
544
+ "epoch": 0.150390625,
545
+ "grad_norm": 0.47381294364503707,
546
+ "learning_rate": 3.9860617609329856e-05,
547
+ "loss": 1.1978,
548
+ "step": 77
549
+ },
550
+ {
551
+ "epoch": 0.15234375,
552
+ "grad_norm": 0.448192967722078,
553
+ "learning_rate": 3.9852990980855505e-05,
554
+ "loss": 1.2042,
555
+ "step": 78
556
+ },
557
+ {
558
+ "epoch": 0.154296875,
559
+ "grad_norm": 0.388483486919693,
560
+ "learning_rate": 3.984516198750997e-05,
561
+ "loss": 1.148,
562
+ "step": 79
563
+ },
564
+ {
565
+ "epoch": 0.15625,
566
+ "grad_norm": 0.4057112657252388,
567
+ "learning_rate": 3.9837130709095475e-05,
568
+ "loss": 1.1267,
569
+ "step": 80
570
+ },
571
+ {
572
+ "epoch": 0.158203125,
573
+ "grad_norm": 0.5111257616377479,
574
+ "learning_rate": 3.982889722747621e-05,
575
+ "loss": 1.1992,
576
+ "step": 81
577
+ },
578
+ {
579
+ "epoch": 0.16015625,
580
+ "grad_norm": 0.42800919524357695,
581
+ "learning_rate": 3.9820461626577426e-05,
582
+ "loss": 1.2214,
583
+ "step": 82
584
+ },
585
+ {
586
+ "epoch": 0.162109375,
587
+ "grad_norm": 0.6604320971658805,
588
+ "learning_rate": 3.981182399238462e-05,
589
+ "loss": 1.1046,
590
+ "step": 83
591
+ },
592
+ {
593
+ "epoch": 0.1640625,
594
+ "grad_norm": 0.4650529995861808,
595
+ "learning_rate": 3.980298441294265e-05,
596
+ "loss": 1.1485,
597
+ "step": 84
598
+ },
599
+ {
600
+ "epoch": 0.166015625,
601
+ "grad_norm": 0.8247014006092652,
602
+ "learning_rate": 3.9793942978354835e-05,
603
+ "loss": 1.2345,
604
+ "step": 85
605
+ },
606
+ {
607
+ "epoch": 0.16796875,
608
+ "grad_norm": 0.5111463246016623,
609
+ "learning_rate": 3.978469978078203e-05,
610
+ "loss": 1.1406,
611
+ "step": 86
612
+ },
613
+ {
614
+ "epoch": 0.169921875,
615
+ "grad_norm": 0.3980549366997817,
616
+ "learning_rate": 3.977525491444171e-05,
617
+ "loss": 1.138,
618
+ "step": 87
619
+ },
620
+ {
621
+ "epoch": 0.171875,
622
+ "grad_norm": 0.4500013345653544,
623
+ "learning_rate": 3.976560847560697e-05,
624
+ "loss": 1.1803,
625
+ "step": 88
626
+ },
627
+ {
628
+ "epoch": 0.173828125,
629
+ "grad_norm": 0.6144879263096161,
630
+ "learning_rate": 3.975576056260559e-05,
631
+ "loss": 1.376,
632
+ "step": 89
633
+ },
634
+ {
635
+ "epoch": 0.17578125,
636
+ "grad_norm": 0.45250166677505255,
637
+ "learning_rate": 3.974571127581901e-05,
638
+ "loss": 1.2616,
639
+ "step": 90
640
+ },
641
+ {
642
+ "epoch": 0.177734375,
643
+ "grad_norm": 0.7260361194779941,
644
+ "learning_rate": 3.973546071768128e-05,
645
+ "loss": 1.207,
646
+ "step": 91
647
+ },
648
+ {
649
+ "epoch": 0.1796875,
650
+ "grad_norm": 0.40590569325939646,
651
+ "learning_rate": 3.972500899267807e-05,
652
+ "loss": 1.1857,
653
+ "step": 92
654
+ },
655
+ {
656
+ "epoch": 0.181640625,
657
+ "grad_norm": 0.7059204956983739,
658
+ "learning_rate": 3.971435620734557e-05,
659
+ "loss": 1.1629,
660
+ "step": 93
661
+ },
662
+ {
663
+ "epoch": 0.18359375,
664
+ "grad_norm": 0.4166494769492577,
665
+ "learning_rate": 3.97035024702694e-05,
666
+ "loss": 1.2105,
667
+ "step": 94
668
+ },
669
+ {
670
+ "epoch": 0.185546875,
671
+ "grad_norm": 0.4708428232528331,
672
+ "learning_rate": 3.969244789208354e-05,
673
+ "loss": 1.2074,
674
+ "step": 95
675
+ },
676
+ {
677
+ "epoch": 0.1875,
678
+ "grad_norm": 0.46187395897944283,
679
+ "learning_rate": 3.9681192585469146e-05,
680
+ "loss": 1.2411,
681
+ "step": 96
682
+ },
683
+ {
684
+ "epoch": 0.189453125,
685
+ "grad_norm": 0.40887786827875044,
686
+ "learning_rate": 3.9669736665153455e-05,
687
+ "loss": 1.181,
688
+ "step": 97
689
+ },
690
+ {
691
+ "epoch": 0.19140625,
692
+ "grad_norm": 0.5783677933870661,
693
+ "learning_rate": 3.96580802479086e-05,
694
+ "loss": 1.2412,
695
+ "step": 98
696
+ },
697
+ {
698
+ "epoch": 0.193359375,
699
+ "grad_norm": 0.46098155681455955,
700
+ "learning_rate": 3.9646223452550374e-05,
701
+ "loss": 1.0478,
702
+ "step": 99
703
+ },
704
+ {
705
+ "epoch": 0.1953125,
706
+ "grad_norm": 0.4421189367731534,
707
+ "learning_rate": 3.9634166399937104e-05,
708
+ "loss": 1.1528,
709
+ "step": 100
710
+ },
711
+ {
712
+ "epoch": 0.197265625,
713
+ "grad_norm": 0.44208897843282735,
714
+ "learning_rate": 3.962190921296834e-05,
715
+ "loss": 1.1294,
716
+ "step": 101
717
+ },
718
+ {
719
+ "epoch": 0.19921875,
720
+ "grad_norm": 0.41115810620405063,
721
+ "learning_rate": 3.9609452016583654e-05,
722
+ "loss": 1.0787,
723
+ "step": 102
724
+ },
725
+ {
726
+ "epoch": 0.201171875,
727
+ "grad_norm": 0.4592703963732682,
728
+ "learning_rate": 3.959679493776134e-05,
729
+ "loss": 1.2084,
730
+ "step": 103
731
+ },
732
+ {
733
+ "epoch": 0.203125,
734
+ "grad_norm": 0.46514364761525706,
735
+ "learning_rate": 3.9583938105517127e-05,
736
+ "loss": 1.169,
737
+ "step": 104
738
+ },
739
+ {
740
+ "epoch": 0.205078125,
741
+ "grad_norm": 0.5044144386089332,
742
+ "learning_rate": 3.957088165090287e-05,
743
+ "loss": 1.121,
744
+ "step": 105
745
+ },
746
+ {
747
+ "epoch": 0.20703125,
748
+ "grad_norm": 0.4160320267546915,
749
+ "learning_rate": 3.9557625707005185e-05,
750
+ "loss": 1.1133,
751
+ "step": 106
752
+ },
753
+ {
754
+ "epoch": 0.208984375,
755
+ "grad_norm": 0.46611013560363507,
756
+ "learning_rate": 3.954417040894416e-05,
757
+ "loss": 1.0846,
758
+ "step": 107
759
+ },
760
+ {
761
+ "epoch": 0.2109375,
762
+ "grad_norm": 0.494489354902747,
763
+ "learning_rate": 3.953051589387189e-05,
764
+ "loss": 1.1762,
765
+ "step": 108
766
+ },
767
+ {
768
+ "epoch": 0.212890625,
769
+ "grad_norm": 0.4226200871032249,
770
+ "learning_rate": 3.951666230097115e-05,
771
+ "loss": 1.0346,
772
+ "step": 109
773
+ },
774
+ {
775
+ "epoch": 0.21484375,
776
+ "grad_norm": 0.4032354878018358,
777
+ "learning_rate": 3.9502609771453934e-05,
778
+ "loss": 1.1223,
779
+ "step": 110
780
+ },
781
+ {
782
+ "epoch": 0.216796875,
783
+ "grad_norm": 0.4148468151686513,
784
+ "learning_rate": 3.948835844856004e-05,
785
+ "loss": 1.1581,
786
+ "step": 111
787
+ },
788
+ {
789
+ "epoch": 0.21875,
790
+ "grad_norm": 0.4655201875464092,
791
+ "learning_rate": 3.947390847755559e-05,
792
+ "loss": 1.141,
793
+ "step": 112
794
+ },
795
+ {
796
+ "epoch": 0.220703125,
797
+ "grad_norm": 0.44131202754652804,
798
+ "learning_rate": 3.945926000573156e-05,
799
+ "loss": 1.228,
800
+ "step": 113
801
+ },
802
+ {
803
+ "epoch": 0.22265625,
804
+ "grad_norm": 0.4878464713519324,
805
+ "learning_rate": 3.94444131824023e-05,
806
+ "loss": 1.2023,
807
+ "step": 114
808
+ },
809
+ {
810
+ "epoch": 0.224609375,
811
+ "grad_norm": 0.4433704308856408,
812
+ "learning_rate": 3.942936815890396e-05,
813
+ "loss": 1.2479,
814
+ "step": 115
815
+ },
816
+ {
817
+ "epoch": 0.2265625,
818
+ "grad_norm": 0.4848454824446459,
819
+ "learning_rate": 3.941412508859299e-05,
820
+ "loss": 1.1269,
821
+ "step": 116
822
+ },
823
+ {
824
+ "epoch": 0.228515625,
825
+ "grad_norm": 0.419630467357436,
826
+ "learning_rate": 3.939868412684458e-05,
827
+ "loss": 1.1806,
828
+ "step": 117
829
+ },
830
+ {
831
+ "epoch": 0.23046875,
832
+ "grad_norm": 0.39683375502836515,
833
+ "learning_rate": 3.938304543105104e-05,
834
+ "loss": 1.1054,
835
+ "step": 118
836
+ },
837
+ {
838
+ "epoch": 0.232421875,
839
+ "grad_norm": 0.4832371787668091,
840
+ "learning_rate": 3.936720916062022e-05,
841
+ "loss": 1.1174,
842
+ "step": 119
843
+ },
844
+ {
845
+ "epoch": 0.234375,
846
+ "grad_norm": 0.5986867637436046,
847
+ "learning_rate": 3.935117547697387e-05,
848
+ "loss": 1.1791,
849
+ "step": 120
850
+ },
851
+ {
852
+ "epoch": 0.236328125,
853
+ "grad_norm": 0.4150490343483682,
854
+ "learning_rate": 3.933494454354605e-05,
855
+ "loss": 1.2129,
856
+ "step": 121
857
+ },
858
+ {
859
+ "epoch": 0.23828125,
860
+ "grad_norm": 0.4215588087170942,
861
+ "learning_rate": 3.931851652578137e-05,
862
+ "loss": 1.1414,
863
+ "step": 122
864
+ },
865
+ {
866
+ "epoch": 0.240234375,
867
+ "grad_norm": 0.42515318009071157,
868
+ "learning_rate": 3.9301891591133377e-05,
869
+ "loss": 1.0854,
870
+ "step": 123
871
+ },
872
+ {
873
+ "epoch": 0.2421875,
874
+ "grad_norm": 0.4488701042494301,
875
+ "learning_rate": 3.928506990906282e-05,
876
+ "loss": 1.0725,
877
+ "step": 124
878
+ },
879
+ {
880
+ "epoch": 0.244140625,
881
+ "grad_norm": 0.41531581194897543,
882
+ "learning_rate": 3.9268051651035944e-05,
883
+ "loss": 1.0746,
884
+ "step": 125
885
+ },
886
+ {
887
+ "epoch": 0.24609375,
888
+ "grad_norm": 0.46204021714125687,
889
+ "learning_rate": 3.9250836990522685e-05,
890
+ "loss": 1.2164,
891
+ "step": 126
892
+ },
893
+ {
894
+ "epoch": 0.248046875,
895
+ "grad_norm": 0.6677384727690392,
896
+ "learning_rate": 3.923342610299499e-05,
897
+ "loss": 1.1834,
898
+ "step": 127
899
+ },
900
+ {
901
+ "epoch": 0.25,
902
+ "grad_norm": 0.4961785465516465,
903
+ "learning_rate": 3.9215819165924956e-05,
904
+ "loss": 1.2178,
905
+ "step": 128
906
+ },
907
+ {
908
+ "epoch": 0.251953125,
909
+ "grad_norm": 0.4651476735438144,
910
+ "learning_rate": 3.919801635878305e-05,
911
+ "loss": 1.1005,
912
+ "step": 129
913
+ },
914
+ {
915
+ "epoch": 0.25390625,
916
+ "grad_norm": 0.49434332973849215,
917
+ "learning_rate": 3.918001786303627e-05,
918
+ "loss": 1.1922,
919
+ "step": 130
920
+ },
921
+ {
922
+ "epoch": 0.255859375,
923
+ "grad_norm": 0.45671514667179935,
924
+ "learning_rate": 3.9161823862146297e-05,
925
+ "loss": 1.0617,
926
+ "step": 131
927
+ },
928
+ {
929
+ "epoch": 0.2578125,
930
+ "grad_norm": 0.49674226929417115,
931
+ "learning_rate": 3.9143434541567654e-05,
932
+ "loss": 1.2203,
933
+ "step": 132
934
+ },
935
+ {
936
+ "epoch": 0.259765625,
937
+ "grad_norm": 0.5208683235687923,
938
+ "learning_rate": 3.912485008874577e-05,
939
+ "loss": 1.1587,
940
+ "step": 133
941
+ },
942
+ {
943
+ "epoch": 0.26171875,
944
+ "grad_norm": 0.517022288962491,
945
+ "learning_rate": 3.9106070693115087e-05,
946
+ "loss": 1.1427,
947
+ "step": 134
948
+ },
949
+ {
950
+ "epoch": 0.263671875,
951
+ "grad_norm": 0.38942661826422087,
952
+ "learning_rate": 3.908709654609715e-05,
953
+ "loss": 1.0629,
954
+ "step": 135
955
+ },
956
+ {
957
+ "epoch": 0.265625,
958
+ "grad_norm": 0.4564236281556844,
959
+ "learning_rate": 3.9067927841098614e-05,
960
+ "loss": 1.0919,
961
+ "step": 136
962
+ },
963
+ {
964
+ "epoch": 0.267578125,
965
+ "grad_norm": 0.4929559987928741,
966
+ "learning_rate": 3.9048564773509314e-05,
967
+ "loss": 1.1502,
968
+ "step": 137
969
+ },
970
+ {
971
+ "epoch": 0.26953125,
972
+ "grad_norm": 0.48513251932309925,
973
+ "learning_rate": 3.902900754070025e-05,
974
+ "loss": 1.1158,
975
+ "step": 138
976
+ },
977
+ {
978
+ "epoch": 0.271484375,
979
+ "grad_norm": 0.5349569441078609,
980
+ "learning_rate": 3.900925634202158e-05,
981
+ "loss": 1.1279,
982
+ "step": 139
983
+ },
984
+ {
985
+ "epoch": 0.2734375,
986
+ "grad_norm": 0.47177459620840684,
987
+ "learning_rate": 3.898931137880059e-05,
988
+ "loss": 1.1595,
989
+ "step": 140
990
+ },
991
+ {
992
+ "epoch": 0.275390625,
993
+ "grad_norm": 0.4904546697998669,
994
+ "learning_rate": 3.896917285433964e-05,
995
+ "loss": 1.2615,
996
+ "step": 141
997
+ },
998
+ {
999
+ "epoch": 0.27734375,
1000
+ "grad_norm": 0.5768180408665089,
1001
+ "learning_rate": 3.894884097391409e-05,
1002
+ "loss": 1.1688,
1003
+ "step": 142
1004
+ },
1005
+ {
1006
+ "epoch": 0.279296875,
1007
+ "grad_norm": 0.4362108519904031,
1008
+ "learning_rate": 3.892831594477021e-05,
1009
+ "loss": 1.0983,
1010
+ "step": 143
1011
+ },
1012
+ {
1013
+ "epoch": 0.28125,
1014
+ "grad_norm": 0.4570710320413065,
1015
+ "learning_rate": 3.890759797612307e-05,
1016
+ "loss": 1.3706,
1017
+ "step": 144
1018
+ },
1019
+ {
1020
+ "epoch": 0.283203125,
1021
+ "grad_norm": 0.4465318663671251,
1022
+ "learning_rate": 3.888668727915441e-05,
1023
+ "loss": 1.1377,
1024
+ "step": 145
1025
+ },
1026
+ {
1027
+ "epoch": 0.28515625,
1028
+ "grad_norm": 0.5047852656660148,
1029
+ "learning_rate": 3.886558406701046e-05,
1030
+ "loss": 1.0747,
1031
+ "step": 146
1032
+ },
1033
+ {
1034
+ "epoch": 0.287109375,
1035
+ "grad_norm": 0.4412295789497703,
1036
+ "learning_rate": 3.884428855479983e-05,
1037
+ "loss": 1.1261,
1038
+ "step": 147
1039
+ },
1040
+ {
1041
+ "epoch": 0.2890625,
1042
+ "grad_norm": 0.4476476539228374,
1043
+ "learning_rate": 3.8822800959591236e-05,
1044
+ "loss": 1.1769,
1045
+ "step": 148
1046
+ },
1047
+ {
1048
+ "epoch": 0.291015625,
1049
+ "grad_norm": 0.45924117326794117,
1050
+ "learning_rate": 3.880112150041134e-05,
1051
+ "loss": 1.1564,
1052
+ "step": 149
1053
+ },
1054
+ {
1055
+ "epoch": 0.29296875,
1056
+ "grad_norm": 0.43931168833110684,
1057
+ "learning_rate": 3.877925039824253e-05,
1058
+ "loss": 1.1682,
1059
+ "step": 150
1060
+ },
1061
+ {
1062
+ "epoch": 0.294921875,
1063
+ "grad_norm": 0.5438637955362605,
1064
+ "learning_rate": 3.8757187876020603e-05,
1065
+ "loss": 1.1448,
1066
+ "step": 151
1067
+ },
1068
+ {
1069
+ "epoch": 0.296875,
1070
+ "grad_norm": 0.42928963297461137,
1071
+ "learning_rate": 3.873493415863256e-05,
1072
+ "loss": 1.2078,
1073
+ "step": 152
1074
+ },
1075
+ {
1076
+ "epoch": 0.298828125,
1077
+ "grad_norm": 0.4381709802123583,
1078
+ "learning_rate": 3.8712489472914286e-05,
1079
+ "loss": 1.0604,
1080
+ "step": 153
1081
+ },
1082
+ {
1083
+ "epoch": 0.30078125,
1084
+ "grad_norm": 0.4988490117613772,
1085
+ "learning_rate": 3.8689854047648224e-05,
1086
+ "loss": 1.1424,
1087
+ "step": 154
1088
+ },
1089
+ {
1090
+ "epoch": 0.302734375,
1091
+ "grad_norm": 0.4257038437137218,
1092
+ "learning_rate": 3.866702811356107e-05,
1093
+ "loss": 1.0955,
1094
+ "step": 155
1095
+ },
1096
+ {
1097
+ "epoch": 0.3046875,
1098
+ "grad_norm": 0.4893472968930594,
1099
+ "learning_rate": 3.86440119033214e-05,
1100
+ "loss": 1.1854,
1101
+ "step": 156
1102
+ },
1103
+ {
1104
+ "epoch": 0.306640625,
1105
+ "grad_norm": 0.5731240348991923,
1106
+ "learning_rate": 3.862080565153731e-05,
1107
+ "loss": 1.2505,
1108
+ "step": 157
1109
+ },
1110
+ {
1111
+ "epoch": 0.30859375,
1112
+ "grad_norm": 0.4594995644663965,
1113
+ "learning_rate": 3.8597409594754025e-05,
1114
+ "loss": 1.1047,
1115
+ "step": 158
1116
+ },
1117
+ {
1118
+ "epoch": 0.310546875,
1119
+ "grad_norm": 0.3898970756217597,
1120
+ "learning_rate": 3.857382397145148e-05,
1121
+ "loss": 1.1728,
1122
+ "step": 159
1123
+ },
1124
+ {
1125
+ "epoch": 0.3125,
1126
+ "grad_norm": 0.5165759238716673,
1127
+ "learning_rate": 3.85500490220419e-05,
1128
+ "loss": 1.1232,
1129
+ "step": 160
1130
+ },
1131
+ {
1132
+ "epoch": 0.314453125,
1133
+ "grad_norm": 0.42169317869735606,
1134
+ "learning_rate": 3.852608498886732e-05,
1135
+ "loss": 1.1087,
1136
+ "step": 161
1137
+ },
1138
+ {
1139
+ "epoch": 0.31640625,
1140
+ "grad_norm": 0.4831766592421198,
1141
+ "learning_rate": 3.850193211619718e-05,
1142
+ "loss": 1.0902,
1143
+ "step": 162
1144
+ },
1145
+ {
1146
+ "epoch": 0.318359375,
1147
+ "grad_norm": 0.5168422003190449,
1148
+ "learning_rate": 3.8477590650225735e-05,
1149
+ "loss": 1.1979,
1150
+ "step": 163
1151
+ },
1152
+ {
1153
+ "epoch": 0.3203125,
1154
+ "grad_norm": 0.44267326014624,
1155
+ "learning_rate": 3.845306083906967e-05,
1156
+ "loss": 1.1311,
1157
+ "step": 164
1158
+ },
1159
+ {
1160
+ "epoch": 0.322265625,
1161
+ "grad_norm": 0.42634229457641887,
1162
+ "learning_rate": 3.842834293276545e-05,
1163
+ "loss": 1.1729,
1164
+ "step": 165
1165
+ },
1166
+ {
1167
+ "epoch": 0.32421875,
1168
+ "grad_norm": 0.40628491116146026,
1169
+ "learning_rate": 3.8403437183266834e-05,
1170
+ "loss": 1.0984,
1171
+ "step": 166
1172
+ },
1173
+ {
1174
+ "epoch": 0.326171875,
1175
+ "grad_norm": 0.4159045672550255,
1176
+ "learning_rate": 3.8378343844442344e-05,
1177
+ "loss": 1.1731,
1178
+ "step": 167
1179
+ },
1180
+ {
1181
+ "epoch": 0.328125,
1182
+ "grad_norm": 0.5968785135150301,
1183
+ "learning_rate": 3.8353063172072564e-05,
1184
+ "loss": 1.0247,
1185
+ "step": 168
1186
+ },
1187
+ {
1188
+ "epoch": 0.330078125,
1189
+ "grad_norm": 0.4649591605790638,
1190
+ "learning_rate": 3.8327595423847645e-05,
1191
+ "loss": 1.139,
1192
+ "step": 169
1193
+ },
1194
+ {
1195
+ "epoch": 0.33203125,
1196
+ "grad_norm": 0.48079030109724175,
1197
+ "learning_rate": 3.830194085936463e-05,
1198
+ "loss": 1.1268,
1199
+ "step": 170
1200
+ },
1201
+ {
1202
+ "epoch": 0.333984375,
1203
+ "grad_norm": 0.46348618416181137,
1204
+ "learning_rate": 3.8276099740124794e-05,
1205
+ "loss": 1.2004,
1206
+ "step": 171
1207
+ },
1208
+ {
1209
+ "epoch": 0.3359375,
1210
+ "grad_norm": 0.4832617358199499,
1211
+ "learning_rate": 3.8250072329531004e-05,
1212
+ "loss": 1.0743,
1213
+ "step": 172
1214
+ },
1215
+ {
1216
+ "epoch": 0.337890625,
1217
+ "grad_norm": 0.4420229534375586,
1218
+ "learning_rate": 3.822385889288503e-05,
1219
+ "loss": 1.141,
1220
+ "step": 173
1221
+ },
1222
+ {
1223
+ "epoch": 0.33984375,
1224
+ "grad_norm": 0.39752191495545935,
1225
+ "learning_rate": 3.819745969738484e-05,
1226
+ "loss": 1.0972,
1227
+ "step": 174
1228
+ },
1229
+ {
1230
+ "epoch": 0.341796875,
1231
+ "grad_norm": 0.4411421700040708,
1232
+ "learning_rate": 3.817087501212185e-05,
1233
+ "loss": 1.0233,
1234
+ "step": 175
1235
+ },
1236
+ {
1237
+ "epoch": 0.34375,
1238
+ "grad_norm": 0.4017237336736879,
1239
+ "learning_rate": 3.8144105108078246e-05,
1240
+ "loss": 1.1563,
1241
+ "step": 176
1242
+ },
1243
+ {
1244
+ "epoch": 0.345703125,
1245
+ "grad_norm": 0.686922962042273,
1246
+ "learning_rate": 3.8117150258124134e-05,
1247
+ "loss": 1.147,
1248
+ "step": 177
1249
+ },
1250
+ {
1251
+ "epoch": 0.34765625,
1252
+ "grad_norm": 0.4294357539370898,
1253
+ "learning_rate": 3.8090010737014836e-05,
1254
+ "loss": 1.1116,
1255
+ "step": 178
1256
+ },
1257
+ {
1258
+ "epoch": 0.349609375,
1259
+ "grad_norm": 0.41962832297995667,
1260
+ "learning_rate": 3.806268682138805e-05,
1261
+ "loss": 1.0827,
1262
+ "step": 179
1263
+ },
1264
+ {
1265
+ "epoch": 0.3515625,
1266
+ "grad_norm": 0.4413195950046206,
1267
+ "learning_rate": 3.803517878976103e-05,
1268
+ "loss": 1.0814,
1269
+ "step": 180
1270
+ },
1271
+ {
1272
+ "epoch": 0.353515625,
1273
+ "grad_norm": 0.45365068157119814,
1274
+ "learning_rate": 3.8007486922527774e-05,
1275
+ "loss": 1.0599,
1276
+ "step": 181
1277
+ },
1278
+ {
1279
+ "epoch": 0.35546875,
1280
+ "grad_norm": 0.5286445380979327,
1281
+ "learning_rate": 3.7979611501956124e-05,
1282
+ "loss": 1.2251,
1283
+ "step": 182
1284
+ },
1285
+ {
1286
+ "epoch": 0.357421875,
1287
+ "grad_norm": 0.38599209970455534,
1288
+ "learning_rate": 3.795155281218493e-05,
1289
+ "loss": 1.1676,
1290
+ "step": 183
1291
+ },
1292
+ {
1293
+ "epoch": 0.359375,
1294
+ "grad_norm": 0.44025531979392435,
1295
+ "learning_rate": 3.7923311139221114e-05,
1296
+ "loss": 1.0514,
1297
+ "step": 184
1298
+ },
1299
+ {
1300
+ "epoch": 0.361328125,
1301
+ "grad_norm": 0.42167205583593925,
1302
+ "learning_rate": 3.789488677093681e-05,
1303
+ "loss": 1.1002,
1304
+ "step": 185
1305
+ },
1306
+ {
1307
+ "epoch": 0.36328125,
1308
+ "grad_norm": 0.4466402130651366,
1309
+ "learning_rate": 3.786627999706638e-05,
1310
+ "loss": 1.1013,
1311
+ "step": 186
1312
+ },
1313
+ {
1314
+ "epoch": 0.365234375,
1315
+ "grad_norm": 0.496760952886551,
1316
+ "learning_rate": 3.783749110920345e-05,
1317
+ "loss": 1.1465,
1318
+ "step": 187
1319
+ },
1320
+ {
1321
+ "epoch": 0.3671875,
1322
+ "grad_norm": 0.4367613213432748,
1323
+ "learning_rate": 3.780852040079802e-05,
1324
+ "loss": 1.0657,
1325
+ "step": 188
1326
+ },
1327
+ {
1328
+ "epoch": 0.369140625,
1329
+ "grad_norm": 0.41447069424638583,
1330
+ "learning_rate": 3.777936816715336e-05,
1331
+ "loss": 1.116,
1332
+ "step": 189
1333
+ },
1334
+ {
1335
+ "epoch": 0.37109375,
1336
+ "grad_norm": 0.4361134375016492,
1337
+ "learning_rate": 3.7750034705423095e-05,
1338
+ "loss": 1.2767,
1339
+ "step": 190
1340
+ },
1341
+ {
1342
+ "epoch": 0.373046875,
1343
+ "grad_norm": 0.4066150259484398,
1344
+ "learning_rate": 3.772052031460812e-05,
1345
+ "loss": 1.0785,
1346
+ "step": 191
1347
+ },
1348
+ {
1349
+ "epoch": 0.375,
1350
+ "grad_norm": 0.40407841923262816,
1351
+ "learning_rate": 3.769082529555359e-05,
1352
+ "loss": 1.1644,
1353
+ "step": 192
1354
+ },
1355
+ {
1356
+ "epoch": 0.376953125,
1357
+ "grad_norm": 0.44561296429853814,
1358
+ "learning_rate": 3.766094995094581e-05,
1359
+ "loss": 1.0663,
1360
+ "step": 193
1361
+ },
1362
+ {
1363
+ "epoch": 0.37890625,
1364
+ "grad_norm": 0.5352430776738828,
1365
+ "learning_rate": 3.7630894585309195e-05,
1366
+ "loss": 1.0209,
1367
+ "step": 194
1368
+ },
1369
+ {
1370
+ "epoch": 0.380859375,
1371
+ "grad_norm": 0.43636357529723163,
1372
+ "learning_rate": 3.7600659505003125e-05,
1373
+ "loss": 1.0621,
1374
+ "step": 195
1375
+ },
1376
+ {
1377
+ "epoch": 0.3828125,
1378
+ "grad_norm": 0.4264879021475797,
1379
+ "learning_rate": 3.757024501821885e-05,
1380
+ "loss": 1.1336,
1381
+ "step": 196
1382
+ },
1383
+ {
1384
+ "epoch": 0.384765625,
1385
+ "grad_norm": 0.3873402520476977,
1386
+ "learning_rate": 3.753965143497635e-05,
1387
+ "loss": 1.1378,
1388
+ "step": 197
1389
+ },
1390
+ {
1391
+ "epoch": 0.38671875,
1392
+ "grad_norm": 0.40092066811193233,
1393
+ "learning_rate": 3.750887906712115e-05,
1394
+ "loss": 1.0685,
1395
+ "step": 198
1396
+ },
1397
+ {
1398
+ "epoch": 0.388671875,
1399
+ "grad_norm": 0.43572366333630774,
1400
+ "learning_rate": 3.747792822832117e-05,
1401
+ "loss": 1.1723,
1402
+ "step": 199
1403
+ },
1404
+ {
1405
+ "epoch": 0.390625,
1406
+ "grad_norm": 0.37730662296410905,
1407
+ "learning_rate": 3.744679923406351e-05,
1408
+ "loss": 1.0823,
1409
+ "step": 200
1410
+ },
1411
+ {
1412
+ "epoch": 0.392578125,
1413
+ "grad_norm": 0.4578098403628755,
1414
+ "learning_rate": 3.741549240165122e-05,
1415
+ "loss": 1.1354,
1416
+ "step": 201
1417
+ },
1418
+ {
1419
+ "epoch": 0.39453125,
1420
+ "grad_norm": 0.4402925550279655,
1421
+ "learning_rate": 3.738400805020011e-05,
1422
+ "loss": 1.0921,
1423
+ "step": 202
1424
+ },
1425
+ {
1426
+ "epoch": 0.396484375,
1427
+ "grad_norm": 0.3814506298253285,
1428
+ "learning_rate": 3.7352346500635466e-05,
1429
+ "loss": 1.0813,
1430
+ "step": 203
1431
+ },
1432
+ {
1433
+ "epoch": 0.3984375,
1434
+ "grad_norm": 0.5352313284178145,
1435
+ "learning_rate": 3.732050807568878e-05,
1436
+ "loss": 1.2286,
1437
+ "step": 204
1438
+ },
1439
+ {
1440
+ "epoch": 0.400390625,
1441
+ "grad_norm": 0.4394941726895711,
1442
+ "learning_rate": 3.728849309989445e-05,
1443
+ "loss": 1.1362,
1444
+ "step": 205
1445
+ },
1446
+ {
1447
+ "epoch": 0.40234375,
1448
+ "grad_norm": 0.40009193940161264,
1449
+ "learning_rate": 3.7256301899586524e-05,
1450
+ "loss": 1.014,
1451
+ "step": 206
1452
+ },
1453
+ {
1454
+ "epoch": 0.404296875,
1455
+ "grad_norm": 0.4093033957375515,
1456
+ "learning_rate": 3.7223934802895294e-05,
1457
+ "loss": 1.0731,
1458
+ "step": 207
1459
+ },
1460
+ {
1461
+ "epoch": 0.40625,
1462
+ "grad_norm": 0.47801078784248796,
1463
+ "learning_rate": 3.719139213974403e-05,
1464
+ "loss": 1.2081,
1465
+ "step": 208
1466
+ },
1467
+ {
1468
+ "epoch": 0.408203125,
1469
+ "grad_norm": 0.5965083454407833,
1470
+ "learning_rate": 3.715867424184554e-05,
1471
+ "loss": 1.1495,
1472
+ "step": 209
1473
+ },
1474
+ {
1475
+ "epoch": 0.41015625,
1476
+ "grad_norm": 0.43672026913516004,
1477
+ "learning_rate": 3.712578144269887e-05,
1478
+ "loss": 1.1201,
1479
+ "step": 210
1480
+ },
1481
+ {
1482
+ "epoch": 0.412109375,
1483
+ "grad_norm": 0.5253144641112631,
1484
+ "learning_rate": 3.7092714077585836e-05,
1485
+ "loss": 1.2268,
1486
+ "step": 211
1487
+ },
1488
+ {
1489
+ "epoch": 0.4140625,
1490
+ "grad_norm": 0.4738073414405108,
1491
+ "learning_rate": 3.705947248356765e-05,
1492
+ "loss": 1.1188,
1493
+ "step": 212
1494
+ },
1495
+ {
1496
+ "epoch": 0.416015625,
1497
+ "grad_norm": 0.4477140058126639,
1498
+ "learning_rate": 3.7026056999481464e-05,
1499
+ "loss": 1.0571,
1500
+ "step": 213
1501
+ },
1502
+ {
1503
+ "epoch": 0.41796875,
1504
+ "grad_norm": 0.4471574730565842,
1505
+ "learning_rate": 3.699246796593692e-05,
1506
+ "loss": 1.0847,
1507
+ "step": 214
1508
+ },
1509
+ {
1510
+ "epoch": 0.419921875,
1511
+ "grad_norm": 0.41405988952981876,
1512
+ "learning_rate": 3.6958705725312655e-05,
1513
+ "loss": 1.1401,
1514
+ "step": 215
1515
+ },
1516
+ {
1517
+ "epoch": 0.421875,
1518
+ "grad_norm": 0.49370245896699827,
1519
+ "learning_rate": 3.692477062175289e-05,
1520
+ "loss": 1.0703,
1521
+ "step": 216
1522
+ },
1523
+ {
1524
+ "epoch": 0.423828125,
1525
+ "grad_norm": 0.4406399072344879,
1526
+ "learning_rate": 3.689066300116381e-05,
1527
+ "loss": 1.1793,
1528
+ "step": 217
1529
+ },
1530
+ {
1531
+ "epoch": 0.42578125,
1532
+ "grad_norm": 0.43483619180179833,
1533
+ "learning_rate": 3.6856383211210134e-05,
1534
+ "loss": 1.1305,
1535
+ "step": 218
1536
+ },
1537
+ {
1538
+ "epoch": 0.427734375,
1539
+ "grad_norm": 0.43256055966703133,
1540
+ "learning_rate": 3.682193160131152e-05,
1541
+ "loss": 1.0943,
1542
+ "step": 219
1543
+ },
1544
+ {
1545
+ "epoch": 0.4296875,
1546
+ "grad_norm": 0.5598257236379292,
1547
+ "learning_rate": 3.678730852263901e-05,
1548
+ "loss": 1.2309,
1549
+ "step": 220
1550
+ },
1551
+ {
1552
+ "epoch": 0.431640625,
1553
+ "grad_norm": 0.39045352547405415,
1554
+ "learning_rate": 3.675251432811144e-05,
1555
+ "loss": 1.0047,
1556
+ "step": 221
1557
+ },
1558
+ {
1559
+ "epoch": 0.43359375,
1560
+ "grad_norm": 0.44912102512870905,
1561
+ "learning_rate": 3.671754937239191e-05,
1562
+ "loss": 1.1087,
1563
+ "step": 222
1564
+ },
1565
+ {
1566
+ "epoch": 0.435546875,
1567
+ "grad_norm": 0.4174420596478436,
1568
+ "learning_rate": 3.668241401188407e-05,
1569
+ "loss": 1.0313,
1570
+ "step": 223
1571
+ },
1572
+ {
1573
+ "epoch": 0.4375,
1574
+ "grad_norm": 0.36458359932139156,
1575
+ "learning_rate": 3.6647108604728546e-05,
1576
+ "loss": 0.9782,
1577
+ "step": 224
1578
+ },
1579
+ {
1580
+ "epoch": 0.439453125,
1581
+ "grad_norm": 0.4419635662052487,
1582
+ "learning_rate": 3.661163351079929e-05,
1583
+ "loss": 1.1076,
1584
+ "step": 225
1585
+ },
1586
+ {
1587
+ "epoch": 0.44140625,
1588
+ "grad_norm": 0.4537093691655119,
1589
+ "learning_rate": 3.6575989091699895e-05,
1590
+ "loss": 1.1265,
1591
+ "step": 226
1592
+ },
1593
+ {
1594
+ "epoch": 0.443359375,
1595
+ "grad_norm": 0.4515222234083662,
1596
+ "learning_rate": 3.65401757107599e-05,
1597
+ "loss": 1.124,
1598
+ "step": 227
1599
+ },
1600
+ {
1601
+ "epoch": 0.4453125,
1602
+ "grad_norm": 0.4509933735945529,
1603
+ "learning_rate": 3.650419373303112e-05,
1604
+ "loss": 1.2212,
1605
+ "step": 228
1606
+ },
1607
+ {
1608
+ "epoch": 0.447265625,
1609
+ "grad_norm": 0.39315970041656184,
1610
+ "learning_rate": 3.646804352528389e-05,
1611
+ "loss": 1.1003,
1612
+ "step": 229
1613
+ },
1614
+ {
1615
+ "epoch": 0.44921875,
1616
+ "grad_norm": 0.583897939706095,
1617
+ "learning_rate": 3.643172545600336e-05,
1618
+ "loss": 1.0984,
1619
+ "step": 230
1620
+ },
1621
+ {
1622
+ "epoch": 0.451171875,
1623
+ "grad_norm": 0.5164803615434137,
1624
+ "learning_rate": 3.63952398953857e-05,
1625
+ "loss": 1.0738,
1626
+ "step": 231
1627
+ },
1628
+ {
1629
+ "epoch": 0.453125,
1630
+ "grad_norm": 0.4070265753872102,
1631
+ "learning_rate": 3.6358587215334355e-05,
1632
+ "loss": 1.034,
1633
+ "step": 232
1634
+ },
1635
+ {
1636
+ "epoch": 0.455078125,
1637
+ "grad_norm": 0.4101472350679783,
1638
+ "learning_rate": 3.632176778945626e-05,
1639
+ "loss": 1.1234,
1640
+ "step": 233
1641
+ },
1642
+ {
1643
+ "epoch": 0.45703125,
1644
+ "grad_norm": 0.410956088362877,
1645
+ "learning_rate": 3.628478199305799e-05,
1646
+ "loss": 1.1062,
1647
+ "step": 234
1648
+ },
1649
+ {
1650
+ "epoch": 0.458984375,
1651
+ "grad_norm": 0.42181972355385416,
1652
+ "learning_rate": 3.624763020314199e-05,
1653
+ "loss": 1.1848,
1654
+ "step": 235
1655
+ },
1656
+ {
1657
+ "epoch": 0.4609375,
1658
+ "grad_norm": 0.4069735981570203,
1659
+ "learning_rate": 3.62103127984027e-05,
1660
+ "loss": 1.1203,
1661
+ "step": 236
1662
+ },
1663
+ {
1664
+ "epoch": 0.462890625,
1665
+ "grad_norm": 0.4142934678480609,
1666
+ "learning_rate": 3.617283015922268e-05,
1667
+ "loss": 1.1044,
1668
+ "step": 237
1669
+ },
1670
+ {
1671
+ "epoch": 0.46484375,
1672
+ "grad_norm": 0.4697374307040272,
1673
+ "learning_rate": 3.6135182667668764e-05,
1674
+ "loss": 1.1947,
1675
+ "step": 238
1676
+ },
1677
+ {
1678
+ "epoch": 0.466796875,
1679
+ "grad_norm": 0.3985058819632944,
1680
+ "learning_rate": 3.6097370707488175e-05,
1681
+ "loss": 1.0906,
1682
+ "step": 239
1683
+ },
1684
+ {
1685
+ "epoch": 0.46875,
1686
+ "grad_norm": 0.40215610602620183,
1687
+ "learning_rate": 3.6059394664104554e-05,
1688
+ "loss": 1.1607,
1689
+ "step": 240
1690
+ },
1691
+ {
1692
+ "epoch": 0.470703125,
1693
+ "grad_norm": 0.3985665062059567,
1694
+ "learning_rate": 3.60212549246141e-05,
1695
+ "loss": 1.0787,
1696
+ "step": 241
1697
+ },
1698
+ {
1699
+ "epoch": 0.47265625,
1700
+ "grad_norm": 0.43711415007382576,
1701
+ "learning_rate": 3.598295187778158e-05,
1702
+ "loss": 1.1554,
1703
+ "step": 242
1704
+ },
1705
+ {
1706
+ "epoch": 0.474609375,
1707
+ "grad_norm": 0.4382023321095773,
1708
+ "learning_rate": 3.5944485914036384e-05,
1709
+ "loss": 1.0126,
1710
+ "step": 243
1711
+ },
1712
+ {
1713
+ "epoch": 0.4765625,
1714
+ "grad_norm": 0.37488265505774904,
1715
+ "learning_rate": 3.590585742546853e-05,
1716
+ "loss": 1.1054,
1717
+ "step": 244
1718
+ },
1719
+ {
1720
+ "epoch": 0.478515625,
1721
+ "grad_norm": 0.40930451172856447,
1722
+ "learning_rate": 3.586706680582471e-05,
1723
+ "loss": 1.0321,
1724
+ "step": 245
1725
+ },
1726
+ {
1727
+ "epoch": 0.48046875,
1728
+ "grad_norm": 0.5059310227059168,
1729
+ "learning_rate": 3.5828114450504205e-05,
1730
+ "loss": 1.1239,
1731
+ "step": 246
1732
+ },
1733
+ {
1734
+ "epoch": 0.482421875,
1735
+ "grad_norm": 0.45898297435796365,
1736
+ "learning_rate": 3.5789000756554927e-05,
1737
+ "loss": 1.0467,
1738
+ "step": 247
1739
+ },
1740
+ {
1741
+ "epoch": 0.484375,
1742
+ "grad_norm": 0.42551550838444063,
1743
+ "learning_rate": 3.5749726122669316e-05,
1744
+ "loss": 1.051,
1745
+ "step": 248
1746
+ },
1747
+ {
1748
+ "epoch": 0.486328125,
1749
+ "grad_norm": 0.4451344613451106,
1750
+ "learning_rate": 3.5710290949180325e-05,
1751
+ "loss": 1.1036,
1752
+ "step": 249
1753
+ },
1754
+ {
1755
+ "epoch": 0.48828125,
1756
+ "grad_norm": 0.43151805025113255,
1757
+ "learning_rate": 3.5670695638057285e-05,
1758
+ "loss": 1.1906,
1759
+ "step": 250
1760
+ },
1761
+ {
1762
+ "epoch": 0.490234375,
1763
+ "grad_norm": 0.492114391902568,
1764
+ "learning_rate": 3.563094059290186e-05,
1765
+ "loss": 1.1629,
1766
+ "step": 251
1767
+ },
1768
+ {
1769
+ "epoch": 0.4921875,
1770
+ "grad_norm": 0.4144331093915329,
1771
+ "learning_rate": 3.5591026218943905e-05,
1772
+ "loss": 1.1485,
1773
+ "step": 252
1774
+ },
1775
+ {
1776
+ "epoch": 0.494140625,
1777
+ "grad_norm": 0.4201461662795515,
1778
+ "learning_rate": 3.5550952923037337e-05,
1779
+ "loss": 1.1451,
1780
+ "step": 253
1781
+ },
1782
+ {
1783
+ "epoch": 0.49609375,
1784
+ "grad_norm": 0.41132936789582963,
1785
+ "learning_rate": 3.551072111365598e-05,
1786
+ "loss": 1.1216,
1787
+ "step": 254
1788
+ },
1789
+ {
1790
+ "epoch": 0.498046875,
1791
+ "grad_norm": 0.40892606177310264,
1792
+ "learning_rate": 3.547033120088943e-05,
1793
+ "loss": 1.0282,
1794
+ "step": 255
1795
+ },
1796
+ {
1797
+ "epoch": 0.5,
1798
+ "grad_norm": 0.39721649148962185,
1799
+ "learning_rate": 3.5429783596438864e-05,
1800
+ "loss": 1.113,
1801
+ "step": 256
1802
+ },
1803
+ {
1804
+ "epoch": 0.501953125,
1805
+ "grad_norm": 0.41766348101220013,
1806
+ "learning_rate": 3.5389078713612806e-05,
1807
+ "loss": 1.0074,
1808
+ "step": 257
1809
+ },
1810
+ {
1811
+ "epoch": 0.50390625,
1812
+ "grad_norm": 0.4167567256329769,
1813
+ "learning_rate": 3.534821696732296e-05,
1814
+ "loss": 1.1494,
1815
+ "step": 258
1816
+ },
1817
+ {
1818
+ "epoch": 0.505859375,
1819
+ "grad_norm": 0.40290815531080393,
1820
+ "learning_rate": 3.5307198774079986e-05,
1821
+ "loss": 1.1173,
1822
+ "step": 259
1823
+ },
1824
+ {
1825
+ "epoch": 0.5078125,
1826
+ "grad_norm": 0.3993720783667527,
1827
+ "learning_rate": 3.52660245519892e-05,
1828
+ "loss": 1.0752,
1829
+ "step": 260
1830
+ },
1831
+ {
1832
+ "epoch": 0.509765625,
1833
+ "grad_norm": 0.42545000522760734,
1834
+ "learning_rate": 3.522469472074638e-05,
1835
+ "loss": 0.9948,
1836
+ "step": 261
1837
+ },
1838
+ {
1839
+ "epoch": 0.51171875,
1840
+ "grad_norm": 0.37379510205589955,
1841
+ "learning_rate": 3.518320970163341e-05,
1842
+ "loss": 1.0816,
1843
+ "step": 262
1844
+ },
1845
+ {
1846
+ "epoch": 0.513671875,
1847
+ "grad_norm": 0.38633279486112854,
1848
+ "learning_rate": 3.514156991751409e-05,
1849
+ "loss": 1.0954,
1850
+ "step": 263
1851
+ },
1852
+ {
1853
+ "epoch": 0.515625,
1854
+ "grad_norm": 0.40389091982968633,
1855
+ "learning_rate": 3.509977579282971e-05,
1856
+ "loss": 1.133,
1857
+ "step": 264
1858
+ },
1859
+ {
1860
+ "epoch": 0.517578125,
1861
+ "grad_norm": 0.4804041926173668,
1862
+ "learning_rate": 3.50578277535948e-05,
1863
+ "loss": 1.0541,
1864
+ "step": 265
1865
+ },
1866
+ {
1867
+ "epoch": 0.51953125,
1868
+ "grad_norm": 0.4012148619394628,
1869
+ "learning_rate": 3.501572622739278e-05,
1870
+ "loss": 1.1555,
1871
+ "step": 266
1872
+ },
1873
+ {
1874
+ "epoch": 0.521484375,
1875
+ "grad_norm": 0.3696526763975506,
1876
+ "learning_rate": 3.497347164337158e-05,
1877
+ "loss": 1.0857,
1878
+ "step": 267
1879
+ },
1880
+ {
1881
+ "epoch": 0.5234375,
1882
+ "grad_norm": 0.655745451392472,
1883
+ "learning_rate": 3.4931064432239256e-05,
1884
+ "loss": 1.1313,
1885
+ "step": 268
1886
+ },
1887
+ {
1888
+ "epoch": 0.525390625,
1889
+ "grad_norm": 0.37063711320152914,
1890
+ "learning_rate": 3.4888505026259644e-05,
1891
+ "loss": 1.0493,
1892
+ "step": 269
1893
+ },
1894
+ {
1895
+ "epoch": 0.52734375,
1896
+ "grad_norm": 0.6053650660031528,
1897
+ "learning_rate": 3.484579385924791e-05,
1898
+ "loss": 1.228,
1899
+ "step": 270
1900
+ },
1901
+ {
1902
+ "epoch": 0.529296875,
1903
+ "grad_norm": 0.4395843614703912,
1904
+ "learning_rate": 3.480293136656617e-05,
1905
+ "loss": 1.0371,
1906
+ "step": 271
1907
+ },
1908
+ {
1909
+ "epoch": 0.53125,
1910
+ "grad_norm": 0.4253433992305504,
1911
+ "learning_rate": 3.475991798511899e-05,
1912
+ "loss": 1.1542,
1913
+ "step": 272
1914
+ },
1915
+ {
1916
+ "epoch": 0.533203125,
1917
+ "grad_norm": 0.4192169579593461,
1918
+ "learning_rate": 3.471675415334899e-05,
1919
+ "loss": 1.119,
1920
+ "step": 273
1921
+ },
1922
+ {
1923
+ "epoch": 0.53515625,
1924
+ "grad_norm": 0.5125507615260523,
1925
+ "learning_rate": 3.467344031123237e-05,
1926
+ "loss": 1.0975,
1927
+ "step": 274
1928
+ },
1929
+ {
1930
+ "epoch": 0.537109375,
1931
+ "grad_norm": 0.4409386727934208,
1932
+ "learning_rate": 3.4629976900274396e-05,
1933
+ "loss": 1.0797,
1934
+ "step": 275
1935
+ },
1936
+ {
1937
+ "epoch": 0.5390625,
1938
+ "grad_norm": 0.4433870652840288,
1939
+ "learning_rate": 3.45863643635049e-05,
1940
+ "loss": 1.0765,
1941
+ "step": 276
1942
+ },
1943
+ {
1944
+ "epoch": 0.541015625,
1945
+ "grad_norm": 0.4369641917579842,
1946
+ "learning_rate": 3.454260314547381e-05,
1947
+ "loss": 1.1345,
1948
+ "step": 277
1949
+ },
1950
+ {
1951
+ "epoch": 0.54296875,
1952
+ "grad_norm": 0.4569220638166111,
1953
+ "learning_rate": 3.449869369224656e-05,
1954
+ "loss": 1.0484,
1955
+ "step": 278
1956
+ },
1957
+ {
1958
+ "epoch": 0.544921875,
1959
+ "grad_norm": 0.39807678444867833,
1960
+ "learning_rate": 3.445463645139959e-05,
1961
+ "loss": 1.1421,
1962
+ "step": 279
1963
+ },
1964
+ {
1965
+ "epoch": 0.546875,
1966
+ "grad_norm": 0.4053891646377848,
1967
+ "learning_rate": 3.441043187201574e-05,
1968
+ "loss": 1.0423,
1969
+ "step": 280
1970
+ },
1971
+ {
1972
+ "epoch": 0.548828125,
1973
+ "grad_norm": 0.3906910516461102,
1974
+ "learning_rate": 3.436608040467973e-05,
1975
+ "loss": 1.1273,
1976
+ "step": 281
1977
+ },
1978
+ {
1979
+ "epoch": 0.55078125,
1980
+ "grad_norm": 0.41346781105113967,
1981
+ "learning_rate": 3.432158250147351e-05,
1982
+ "loss": 1.0668,
1983
+ "step": 282
1984
+ },
1985
+ {
1986
+ "epoch": 0.552734375,
1987
+ "grad_norm": 0.4124283498849353,
1988
+ "learning_rate": 3.4276938615971664e-05,
1989
+ "loss": 1.0927,
1990
+ "step": 283
1991
+ },
1992
+ {
1993
+ "epoch": 0.5546875,
1994
+ "grad_norm": 0.43815431152188694,
1995
+ "learning_rate": 3.4232149203236836e-05,
1996
+ "loss": 1.1899,
1997
+ "step": 284
1998
+ },
1999
+ {
2000
+ "epoch": 0.556640625,
2001
+ "grad_norm": 0.3884560347509617,
2002
+ "learning_rate": 3.418721471981502e-05,
2003
+ "loss": 1.0609,
2004
+ "step": 285
2005
+ },
2006
+ {
2007
+ "epoch": 0.55859375,
2008
+ "grad_norm": 0.4232084968596145,
2009
+ "learning_rate": 3.4142135623730954e-05,
2010
+ "loss": 1.1084,
2011
+ "step": 286
2012
+ },
2013
+ {
2014
+ "epoch": 0.560546875,
2015
+ "grad_norm": 0.6358397558455653,
2016
+ "learning_rate": 3.409691237448343e-05,
2017
+ "loss": 1.029,
2018
+ "step": 287
2019
+ },
2020
+ {
2021
+ "epoch": 0.5625,
2022
+ "grad_norm": 0.45992194648645957,
2023
+ "learning_rate": 3.405154543304065e-05,
2024
+ "loss": 1.0849,
2025
+ "step": 288
2026
+ },
2027
+ {
2028
+ "epoch": 0.564453125,
2029
+ "grad_norm": 0.4818812993346098,
2030
+ "learning_rate": 3.400603526183542e-05,
2031
+ "loss": 0.943,
2032
+ "step": 289
2033
+ },
2034
+ {
2035
+ "epoch": 0.56640625,
2036
+ "grad_norm": 0.3765252982516796,
2037
+ "learning_rate": 3.3960382324760596e-05,
2038
+ "loss": 0.9954,
2039
+ "step": 290
2040
+ },
2041
+ {
2042
+ "epoch": 0.568359375,
2043
+ "grad_norm": 0.46990214773068983,
2044
+ "learning_rate": 3.391458708716422e-05,
2045
+ "loss": 1.0926,
2046
+ "step": 291
2047
+ },
2048
+ {
2049
+ "epoch": 0.5703125,
2050
+ "grad_norm": 0.3917178675223708,
2051
+ "learning_rate": 3.3868650015844835e-05,
2052
+ "loss": 1.0707,
2053
+ "step": 292
2054
+ },
2055
+ {
2056
+ "epoch": 0.572265625,
2057
+ "grad_norm": 0.41696024883927335,
2058
+ "learning_rate": 3.382257157904674e-05,
2059
+ "loss": 1.0687,
2060
+ "step": 293
2061
+ },
2062
+ {
2063
+ "epoch": 0.57421875,
2064
+ "grad_norm": 0.38807035050695815,
2065
+ "learning_rate": 3.377635224645515e-05,
2066
+ "loss": 1.1126,
2067
+ "step": 294
2068
+ },
2069
+ {
2070
+ "epoch": 0.576171875,
2071
+ "grad_norm": 0.406255734326262,
2072
+ "learning_rate": 3.3729992489191514e-05,
2073
+ "loss": 1.1278,
2074
+ "step": 295
2075
+ },
2076
+ {
2077
+ "epoch": 0.578125,
2078
+ "grad_norm": 0.39143009407102003,
2079
+ "learning_rate": 3.368349277980861e-05,
2080
+ "loss": 1.1409,
2081
+ "step": 296
2082
+ },
2083
+ {
2084
+ "epoch": 0.580078125,
2085
+ "grad_norm": 0.39325912719226885,
2086
+ "learning_rate": 3.363685359228579e-05,
2087
+ "loss": 1.0673,
2088
+ "step": 297
2089
+ },
2090
+ {
2091
+ "epoch": 0.58203125,
2092
+ "grad_norm": 0.4080744357399852,
2093
+ "learning_rate": 3.359007540202412e-05,
2094
+ "loss": 1.0569,
2095
+ "step": 298
2096
+ },
2097
+ {
2098
+ "epoch": 0.583984375,
2099
+ "grad_norm": 0.41221286181985456,
2100
+ "learning_rate": 3.354315868584155e-05,
2101
+ "loss": 1.0345,
2102
+ "step": 299
2103
+ },
2104
+ {
2105
+ "epoch": 0.5859375,
2106
+ "grad_norm": 0.408899231590681,
2107
+ "learning_rate": 3.349610392196804e-05,
2108
+ "loss": 1.1531,
2109
+ "step": 300
2110
+ },
2111
+ {
2112
+ "epoch": 0.587890625,
2113
+ "grad_norm": 0.40782751081372265,
2114
+ "learning_rate": 3.344891159004072e-05,
2115
+ "loss": 1.1214,
2116
+ "step": 301
2117
+ },
2118
+ {
2119
+ "epoch": 0.58984375,
2120
+ "grad_norm": 0.41491986698901345,
2121
+ "learning_rate": 3.340158217109895e-05,
2122
+ "loss": 1.102,
2123
+ "step": 302
2124
+ },
2125
+ {
2126
+ "epoch": 0.591796875,
2127
+ "grad_norm": 0.43560034237218315,
2128
+ "learning_rate": 3.335411614757942e-05,
2129
+ "loss": 1.0563,
2130
+ "step": 303
2131
+ },
2132
+ {
2133
+ "epoch": 0.59375,
2134
+ "grad_norm": 0.39300089945853034,
2135
+ "learning_rate": 3.3306514003311305e-05,
2136
+ "loss": 1.0941,
2137
+ "step": 304
2138
+ },
2139
+ {
2140
+ "epoch": 0.595703125,
2141
+ "grad_norm": 0.3993080209023848,
2142
+ "learning_rate": 3.3258776223511254e-05,
2143
+ "loss": 1.061,
2144
+ "step": 305
2145
+ },
2146
+ {
2147
+ "epoch": 0.59765625,
2148
+ "grad_norm": 0.4403361997874876,
2149
+ "learning_rate": 3.3210903294778476e-05,
2150
+ "loss": 1.059,
2151
+ "step": 306
2152
+ },
2153
+ {
2154
+ "epoch": 0.599609375,
2155
+ "grad_norm": 0.40839699507220767,
2156
+ "learning_rate": 3.3162895705089755e-05,
2157
+ "loss": 1.0646,
2158
+ "step": 307
2159
+ },
2160
+ {
2161
+ "epoch": 0.6015625,
2162
+ "grad_norm": 0.45190381917447386,
2163
+ "learning_rate": 3.311475394379454e-05,
2164
+ "loss": 1.0537,
2165
+ "step": 308
2166
+ },
2167
+ {
2168
+ "epoch": 0.603515625,
2169
+ "grad_norm": 0.4029154813389833,
2170
+ "learning_rate": 3.306647850160986e-05,
2171
+ "loss": 1.0964,
2172
+ "step": 309
2173
+ },
2174
+ {
2175
+ "epoch": 0.60546875,
2176
+ "grad_norm": 0.4202106517061233,
2177
+ "learning_rate": 3.301806987061543e-05,
2178
+ "loss": 1.0978,
2179
+ "step": 310
2180
+ },
2181
+ {
2182
+ "epoch": 0.607421875,
2183
+ "grad_norm": 0.4668232017003024,
2184
+ "learning_rate": 3.296952854424854e-05,
2185
+ "loss": 1.0437,
2186
+ "step": 311
2187
+ },
2188
+ {
2189
+ "epoch": 0.609375,
2190
+ "grad_norm": 0.39673723899015667,
2191
+ "learning_rate": 3.292085501729909e-05,
2192
+ "loss": 1.1046,
2193
+ "step": 312
2194
+ },
2195
+ {
2196
+ "epoch": 0.611328125,
2197
+ "grad_norm": 0.44958313468143707,
2198
+ "learning_rate": 3.287204978590451e-05,
2199
+ "loss": 1.1186,
2200
+ "step": 313
2201
+ },
2202
+ {
2203
+ "epoch": 0.61328125,
2204
+ "grad_norm": 0.4836454614853554,
2205
+ "learning_rate": 3.282311334754473e-05,
2206
+ "loss": 1.0877,
2207
+ "step": 314
2208
+ },
2209
+ {
2210
+ "epoch": 0.615234375,
2211
+ "grad_norm": 0.42606585670317537,
2212
+ "learning_rate": 3.277404620103707e-05,
2213
+ "loss": 1.1295,
2214
+ "step": 315
2215
+ },
2216
+ {
2217
+ "epoch": 0.6171875,
2218
+ "grad_norm": 0.390307353492261,
2219
+ "learning_rate": 3.27248488465312e-05,
2220
+ "loss": 1.1007,
2221
+ "step": 316
2222
+ },
2223
+ {
2224
+ "epoch": 0.619140625,
2225
+ "grad_norm": 0.3805925300751237,
2226
+ "learning_rate": 3.267552178550401e-05,
2227
+ "loss": 1.1001,
2228
+ "step": 317
2229
+ },
2230
+ {
2231
+ "epoch": 0.62109375,
2232
+ "grad_norm": 0.4035790500067785,
2233
+ "learning_rate": 3.262606552075454e-05,
2234
+ "loss": 1.1128,
2235
+ "step": 318
2236
+ },
2237
+ {
2238
+ "epoch": 0.623046875,
2239
+ "grad_norm": 0.4722955312249792,
2240
+ "learning_rate": 3.2576480556398786e-05,
2241
+ "loss": 1.1137,
2242
+ "step": 319
2243
+ },
2244
+ {
2245
+ "epoch": 0.625,
2246
+ "grad_norm": 0.44165761079295995,
2247
+ "learning_rate": 3.2526767397864614e-05,
2248
+ "loss": 1.1454,
2249
+ "step": 320
2250
+ },
2251
+ {
2252
+ "epoch": 0.626953125,
2253
+ "grad_norm": 0.39553753160419564,
2254
+ "learning_rate": 3.2476926551886606e-05,
2255
+ "loss": 1.1166,
2256
+ "step": 321
2257
+ },
2258
+ {
2259
+ "epoch": 0.62890625,
2260
+ "grad_norm": 0.403965297853274,
2261
+ "learning_rate": 3.2426958526500865e-05,
2262
+ "loss": 1.0781,
2263
+ "step": 322
2264
+ },
2265
+ {
2266
+ "epoch": 0.630859375,
2267
+ "grad_norm": 0.3903234152596363,
2268
+ "learning_rate": 3.237686383103988e-05,
2269
+ "loss": 1.0549,
2270
+ "step": 323
2271
+ },
2272
+ {
2273
+ "epoch": 0.6328125,
2274
+ "grad_norm": 0.3927744347727879,
2275
+ "learning_rate": 3.232664297612727e-05,
2276
+ "loss": 1.1046,
2277
+ "step": 324
2278
+ },
2279
+ {
2280
+ "epoch": 0.634765625,
2281
+ "grad_norm": 0.3812149147814974,
2282
+ "learning_rate": 3.227629647367268e-05,
2283
+ "loss": 1.1601,
2284
+ "step": 325
2285
+ },
2286
+ {
2287
+ "epoch": 0.63671875,
2288
+ "grad_norm": 0.38396424698024334,
2289
+ "learning_rate": 3.2225824836866436e-05,
2290
+ "loss": 1.0004,
2291
+ "step": 326
2292
+ },
2293
+ {
2294
+ "epoch": 0.638671875,
2295
+ "grad_norm": 0.47563674580569204,
2296
+ "learning_rate": 3.217522858017442e-05,
2297
+ "loss": 1.0227,
2298
+ "step": 327
2299
+ },
2300
+ {
2301
+ "epoch": 0.640625,
2302
+ "grad_norm": 0.3935678660654307,
2303
+ "learning_rate": 3.212450821933277e-05,
2304
+ "loss": 1.0778,
2305
+ "step": 328
2306
+ },
2307
+ {
2308
+ "epoch": 0.642578125,
2309
+ "grad_norm": 0.37644343966319804,
2310
+ "learning_rate": 3.207366427134264e-05,
2311
+ "loss": 1.0786,
2312
+ "step": 329
2313
+ },
2314
+ {
2315
+ "epoch": 0.64453125,
2316
+ "grad_norm": 0.3901117853270985,
2317
+ "learning_rate": 3.2022697254464926e-05,
2318
+ "loss": 1.0559,
2319
+ "step": 330
2320
+ },
2321
+ {
2322
+ "epoch": 0.646484375,
2323
+ "grad_norm": 0.38427110510469054,
2324
+ "learning_rate": 3.1971607688215005e-05,
2325
+ "loss": 1.0164,
2326
+ "step": 331
2327
+ },
2328
+ {
2329
+ "epoch": 0.6484375,
2330
+ "grad_norm": 0.42177940077749226,
2331
+ "learning_rate": 3.19203960933574e-05,
2332
+ "loss": 1.0411,
2333
+ "step": 332
2334
+ },
2335
+ {
2336
+ "epoch": 0.650390625,
2337
+ "grad_norm": 0.4528297229069142,
2338
+ "learning_rate": 3.1869062991900496e-05,
2339
+ "loss": 1.1706,
2340
+ "step": 333
2341
+ },
2342
+ {
2343
+ "epoch": 0.65234375,
2344
+ "grad_norm": 0.3803445217139758,
2345
+ "learning_rate": 3.1817608907091216e-05,
2346
+ "loss": 1.0699,
2347
+ "step": 334
2348
+ },
2349
+ {
2350
+ "epoch": 0.654296875,
2351
+ "grad_norm": 0.41347538149417745,
2352
+ "learning_rate": 3.176603436340969e-05,
2353
+ "loss": 1.1955,
2354
+ "step": 335
2355
+ },
2356
+ {
2357
+ "epoch": 0.65625,
2358
+ "grad_norm": 0.3694910871081213,
2359
+ "learning_rate": 3.1714339886563896e-05,
2360
+ "loss": 0.9668,
2361
+ "step": 336
2362
+ },
2363
+ {
2364
+ "epoch": 0.658203125,
2365
+ "grad_norm": 0.3817019926131847,
2366
+ "learning_rate": 3.1662526003484336e-05,
2367
+ "loss": 0.9349,
2368
+ "step": 337
2369
+ },
2370
+ {
2371
+ "epoch": 0.66015625,
2372
+ "grad_norm": 0.4366158667650914,
2373
+ "learning_rate": 3.16105932423186e-05,
2374
+ "loss": 1.0995,
2375
+ "step": 338
2376
+ },
2377
+ {
2378
+ "epoch": 0.662109375,
2379
+ "grad_norm": 0.41958839201127524,
2380
+ "learning_rate": 3.155854213242606e-05,
2381
+ "loss": 0.9731,
2382
+ "step": 339
2383
+ },
2384
+ {
2385
+ "epoch": 0.6640625,
2386
+ "grad_norm": 0.47402698673401783,
2387
+ "learning_rate": 3.1506373204372414e-05,
2388
+ "loss": 1.147,
2389
+ "step": 340
2390
+ },
2391
+ {
2392
+ "epoch": 0.666015625,
2393
+ "grad_norm": 0.4827624577661964,
2394
+ "learning_rate": 3.145408698992431e-05,
2395
+ "loss": 1.0264,
2396
+ "step": 341
2397
+ },
2398
+ {
2399
+ "epoch": 0.66796875,
2400
+ "grad_norm": 0.4263534871906621,
2401
+ "learning_rate": 3.140168402204391e-05,
2402
+ "loss": 1.1036,
2403
+ "step": 342
2404
+ },
2405
+ {
2406
+ "epoch": 0.669921875,
2407
+ "grad_norm": 0.40773201005922843,
2408
+ "learning_rate": 3.134916483488347e-05,
2409
+ "loss": 1.0361,
2410
+ "step": 343
2411
+ },
2412
+ {
2413
+ "epoch": 0.671875,
2414
+ "grad_norm": 0.4066940928998629,
2415
+ "learning_rate": 3.129652996377987e-05,
2416
+ "loss": 1.1271,
2417
+ "step": 344
2418
+ },
2419
+ {
2420
+ "epoch": 0.673828125,
2421
+ "grad_norm": 0.4241747622419329,
2422
+ "learning_rate": 3.124377994524921e-05,
2423
+ "loss": 1.1259,
2424
+ "step": 345
2425
+ },
2426
+ {
2427
+ "epoch": 0.67578125,
2428
+ "grad_norm": 0.39662513220486106,
2429
+ "learning_rate": 3.1190915316981285e-05,
2430
+ "loss": 1.0236,
2431
+ "step": 346
2432
+ },
2433
+ {
2434
+ "epoch": 0.677734375,
2435
+ "grad_norm": 0.43948866331025493,
2436
+ "learning_rate": 3.1137936617834116e-05,
2437
+ "loss": 1.1076,
2438
+ "step": 347
2439
+ },
2440
+ {
2441
+ "epoch": 0.6796875,
2442
+ "grad_norm": 0.36237602577817707,
2443
+ "learning_rate": 3.10848443878285e-05,
2444
+ "loss": 1.033,
2445
+ "step": 348
2446
+ },
2447
+ {
2448
+ "epoch": 0.681640625,
2449
+ "grad_norm": 0.40357619022841135,
2450
+ "learning_rate": 3.103163916814243e-05,
2451
+ "loss": 1.1313,
2452
+ "step": 349
2453
+ },
2454
+ {
2455
+ "epoch": 0.68359375,
2456
+ "grad_norm": 0.4555883501566975,
2457
+ "learning_rate": 3.0978321501105666e-05,
2458
+ "loss": 1.0808,
2459
+ "step": 350
2460
+ },
2461
+ {
2462
+ "epoch": 0.685546875,
2463
+ "grad_norm": 0.35792704349676846,
2464
+ "learning_rate": 3.0924891930194135e-05,
2465
+ "loss": 1.0395,
2466
+ "step": 351
2467
+ },
2468
+ {
2469
+ "epoch": 0.6875,
2470
+ "grad_norm": 0.593623473361786,
2471
+ "learning_rate": 3.0871351000024425e-05,
2472
+ "loss": 1.0712,
2473
+ "step": 352
2474
+ },
2475
+ {
2476
+ "epoch": 0.689453125,
2477
+ "grad_norm": 0.4074422748367139,
2478
+ "learning_rate": 3.0817699256348225e-05,
2479
+ "loss": 0.9527,
2480
+ "step": 353
2481
+ },
2482
+ {
2483
+ "epoch": 0.69140625,
2484
+ "grad_norm": 0.4127817442760279,
2485
+ "learning_rate": 3.076393724604678e-05,
2486
+ "loss": 1.1954,
2487
+ "step": 354
2488
+ },
2489
+ {
2490
+ "epoch": 0.693359375,
2491
+ "grad_norm": 0.4946890107161909,
2492
+ "learning_rate": 3.071006551712528e-05,
2493
+ "loss": 1.0985,
2494
+ "step": 355
2495
+ },
2496
+ {
2497
+ "epoch": 0.6953125,
2498
+ "grad_norm": 0.44421056915788415,
2499
+ "learning_rate": 3.065608461870731e-05,
2500
+ "loss": 1.1738,
2501
+ "step": 356
2502
+ },
2503
+ {
2504
+ "epoch": 0.697265625,
2505
+ "grad_norm": 0.4556022988192606,
2506
+ "learning_rate": 3.0601995101029234e-05,
2507
+ "loss": 1.0996,
2508
+ "step": 357
2509
+ },
2510
+ {
2511
+ "epoch": 0.69921875,
2512
+ "grad_norm": 0.4589330478948055,
2513
+ "learning_rate": 3.054779751543459e-05,
2514
+ "loss": 1.1462,
2515
+ "step": 358
2516
+ },
2517
+ {
2518
+ "epoch": 0.701171875,
2519
+ "grad_norm": 0.8222210487787517,
2520
+ "learning_rate": 3.0493492414368467e-05,
2521
+ "loss": 1.0775,
2522
+ "step": 359
2523
+ },
2524
+ {
2525
+ "epoch": 0.703125,
2526
+ "grad_norm": 0.4588728539488581,
2527
+ "learning_rate": 3.0439080351371875e-05,
2528
+ "loss": 1.0424,
2529
+ "step": 360
2530
+ },
2531
+ {
2532
+ "epoch": 0.705078125,
2533
+ "grad_norm": 0.44719999962538626,
2534
+ "learning_rate": 3.0384561881076117e-05,
2535
+ "loss": 1.0759,
2536
+ "step": 361
2537
+ },
2538
+ {
2539
+ "epoch": 0.70703125,
2540
+ "grad_norm": 0.46357553715630206,
2541
+ "learning_rate": 3.0329937559197115e-05,
2542
+ "loss": 1.2382,
2543
+ "step": 362
2544
+ },
2545
+ {
2546
+ "epoch": 0.708984375,
2547
+ "grad_norm": 0.40336861309256355,
2548
+ "learning_rate": 3.0275207942529756e-05,
2549
+ "loss": 1.1079,
2550
+ "step": 363
2551
+ },
2552
+ {
2553
+ "epoch": 0.7109375,
2554
+ "grad_norm": 0.5144680446514719,
2555
+ "learning_rate": 3.022037358894221e-05,
2556
+ "loss": 1.0465,
2557
+ "step": 364
2558
+ },
2559
+ {
2560
+ "epoch": 0.712890625,
2561
+ "grad_norm": 0.4921289653271309,
2562
+ "learning_rate": 3.0165435057370263e-05,
2563
+ "loss": 1.0311,
2564
+ "step": 365
2565
+ },
2566
+ {
2567
+ "epoch": 0.71484375,
2568
+ "grad_norm": 0.4320225158526767,
2569
+ "learning_rate": 3.011039290781158e-05,
2570
+ "loss": 1.0595,
2571
+ "step": 366
2572
+ },
2573
+ {
2574
+ "epoch": 0.716796875,
2575
+ "grad_norm": 0.3810201922042623,
2576
+ "learning_rate": 3.005524770132004e-05,
2577
+ "loss": 0.9803,
2578
+ "step": 367
2579
+ },
2580
+ {
2581
+ "epoch": 0.71875,
2582
+ "grad_norm": 0.4495492407985583,
2583
+ "learning_rate": 3.0000000000000004e-05,
2584
+ "loss": 1.0729,
2585
+ "step": 368
2586
+ },
2587
+ {
2588
+ "epoch": 0.720703125,
2589
+ "grad_norm": 0.4152518634185682,
2590
+ "learning_rate": 2.9944650367000556e-05,
2591
+ "loss": 1.164,
2592
+ "step": 369
2593
+ },
2594
+ {
2595
+ "epoch": 0.72265625,
2596
+ "grad_norm": 0.46481518081956474,
2597
+ "learning_rate": 2.9889199366509807e-05,
2598
+ "loss": 1.0677,
2599
+ "step": 370
2600
+ },
2601
+ {
2602
+ "epoch": 0.724609375,
2603
+ "grad_norm": 0.36687791333329894,
2604
+ "learning_rate": 2.983364756374912e-05,
2605
+ "loss": 1.097,
2606
+ "step": 371
2607
+ },
2608
+ {
2609
+ "epoch": 0.7265625,
2610
+ "grad_norm": 0.4609623092360792,
2611
+ "learning_rate": 2.977799552496734e-05,
2612
+ "loss": 1.0742,
2613
+ "step": 372
2614
+ },
2615
+ {
2616
+ "epoch": 0.728515625,
2617
+ "grad_norm": 0.43485629130468156,
2618
+ "learning_rate": 2.9722243817435057e-05,
2619
+ "loss": 1.0596,
2620
+ "step": 373
2621
+ },
2622
+ {
2623
+ "epoch": 0.73046875,
2624
+ "grad_norm": 0.4308785423786187,
2625
+ "learning_rate": 2.9666393009438778e-05,
2626
+ "loss": 1.1025,
2627
+ "step": 374
2628
+ },
2629
+ {
2630
+ "epoch": 0.732421875,
2631
+ "grad_norm": 0.41425216636311923,
2632
+ "learning_rate": 2.9610443670275177e-05,
2633
+ "loss": 1.033,
2634
+ "step": 375
2635
+ },
2636
+ {
2637
+ "epoch": 0.734375,
2638
+ "grad_norm": 0.5209374726966056,
2639
+ "learning_rate": 2.955439637024526e-05,
2640
+ "loss": 1.0744,
2641
+ "step": 376
2642
+ },
2643
+ {
2644
+ "epoch": 0.736328125,
2645
+ "grad_norm": 0.7038228729760657,
2646
+ "learning_rate": 2.9498251680648572e-05,
2647
+ "loss": 1.0699,
2648
+ "step": 377
2649
+ },
2650
+ {
2651
+ "epoch": 0.73828125,
2652
+ "grad_norm": 0.38639106447314064,
2653
+ "learning_rate": 2.9442010173777355e-05,
2654
+ "loss": 1.0536,
2655
+ "step": 378
2656
+ },
2657
+ {
2658
+ "epoch": 0.740234375,
2659
+ "grad_norm": 0.5464755744132558,
2660
+ "learning_rate": 2.9385672422910746e-05,
2661
+ "loss": 1.1398,
2662
+ "step": 379
2663
+ },
2664
+ {
2665
+ "epoch": 0.7421875,
2666
+ "grad_norm": 0.37413132931711773,
2667
+ "learning_rate": 2.932923900230889e-05,
2668
+ "loss": 1.0285,
2669
+ "step": 380
2670
+ },
2671
+ {
2672
+ "epoch": 0.744140625,
2673
+ "grad_norm": 0.5155456583703741,
2674
+ "learning_rate": 2.9272710487207123e-05,
2675
+ "loss": 1.0657,
2676
+ "step": 381
2677
+ },
2678
+ {
2679
+ "epoch": 0.74609375,
2680
+ "grad_norm": 0.42610802775582945,
2681
+ "learning_rate": 2.92160874538101e-05,
2682
+ "loss": 1.0751,
2683
+ "step": 382
2684
+ },
2685
+ {
2686
+ "epoch": 0.748046875,
2687
+ "grad_norm": 0.37312053203898266,
2688
+ "learning_rate": 2.91593704792859e-05,
2689
+ "loss": 1.1236,
2690
+ "step": 383
2691
+ },
2692
+ {
2693
+ "epoch": 0.75,
2694
+ "grad_norm": 0.3865778900367502,
2695
+ "learning_rate": 2.9102560141760178e-05,
2696
+ "loss": 1.0783,
2697
+ "step": 384
2698
+ },
2699
+ {
2700
+ "epoch": 0.751953125,
2701
+ "grad_norm": 0.44181257585885864,
2702
+ "learning_rate": 2.9045657020310245e-05,
2703
+ "loss": 1.096,
2704
+ "step": 385
2705
+ },
2706
+ {
2707
+ "epoch": 0.75390625,
2708
+ "grad_norm": 0.4355612014896031,
2709
+ "learning_rate": 2.898866169495916e-05,
2710
+ "loss": 1.1355,
2711
+ "step": 386
2712
+ },
2713
+ {
2714
+ "epoch": 0.755859375,
2715
+ "grad_norm": 0.43570244826557325,
2716
+ "learning_rate": 2.8931574746669865e-05,
2717
+ "loss": 0.979,
2718
+ "step": 387
2719
+ },
2720
+ {
2721
+ "epoch": 0.7578125,
2722
+ "grad_norm": 0.4624097023644056,
2723
+ "learning_rate": 2.8874396757339197e-05,
2724
+ "loss": 1.1244,
2725
+ "step": 388
2726
+ },
2727
+ {
2728
+ "epoch": 0.759765625,
2729
+ "grad_norm": 0.43243927150243583,
2730
+ "learning_rate": 2.881712830979201e-05,
2731
+ "loss": 1.2005,
2732
+ "step": 389
2733
+ },
2734
+ {
2735
+ "epoch": 0.76171875,
2736
+ "grad_norm": 0.39334103281716926,
2737
+ "learning_rate": 2.875976998777521e-05,
2738
+ "loss": 1.1406,
2739
+ "step": 390
2740
+ },
2741
+ {
2742
+ "epoch": 0.763671875,
2743
+ "grad_norm": 0.41626592809859797,
2744
+ "learning_rate": 2.8702322375951808e-05,
2745
+ "loss": 1.0462,
2746
+ "step": 391
2747
+ },
2748
+ {
2749
+ "epoch": 0.765625,
2750
+ "grad_norm": 0.37844113633007853,
2751
+ "learning_rate": 2.864478605989494e-05,
2752
+ "loss": 0.9938,
2753
+ "step": 392
2754
+ },
2755
+ {
2756
+ "epoch": 0.767578125,
2757
+ "grad_norm": 0.38237298412290605,
2758
+ "learning_rate": 2.8587161626081963e-05,
2759
+ "loss": 1.1152,
2760
+ "step": 393
2761
+ },
2762
+ {
2763
+ "epoch": 0.76953125,
2764
+ "grad_norm": 0.457773179175426,
2765
+ "learning_rate": 2.8529449661888397e-05,
2766
+ "loss": 1.0211,
2767
+ "step": 394
2768
+ },
2769
+ {
2770
+ "epoch": 0.771484375,
2771
+ "grad_norm": 0.5451142296439877,
2772
+ "learning_rate": 2.8471650755581982e-05,
2773
+ "loss": 1.0347,
2774
+ "step": 395
2775
+ },
2776
+ {
2777
+ "epoch": 0.7734375,
2778
+ "grad_norm": 0.3748054383861272,
2779
+ "learning_rate": 2.8413765496316682e-05,
2780
+ "loss": 1.0349,
2781
+ "step": 396
2782
+ },
2783
+ {
2784
+ "epoch": 0.775390625,
2785
+ "grad_norm": 0.40348473462322654,
2786
+ "learning_rate": 2.8355794474126673e-05,
2787
+ "loss": 1.0827,
2788
+ "step": 397
2789
+ },
2790
+ {
2791
+ "epoch": 0.77734375,
2792
+ "grad_norm": 0.45778728826184956,
2793
+ "learning_rate": 2.8297738279920302e-05,
2794
+ "loss": 1.08,
2795
+ "step": 398
2796
+ },
2797
+ {
2798
+ "epoch": 0.779296875,
2799
+ "grad_norm": 0.416175722341481,
2800
+ "learning_rate": 2.8239597505474123e-05,
2801
+ "loss": 1.1477,
2802
+ "step": 399
2803
+ },
2804
+ {
2805
+ "epoch": 0.78125,
2806
+ "grad_norm": 0.4762205014497946,
2807
+ "learning_rate": 2.8181372743426805e-05,
2808
+ "loss": 1.1281,
2809
+ "step": 400
2810
+ },
2811
+ {
2812
+ "epoch": 0.783203125,
2813
+ "grad_norm": 0.38963452597451154,
2814
+ "learning_rate": 2.8123064587273123e-05,
2815
+ "loss": 1.1001,
2816
+ "step": 401
2817
+ },
2818
+ {
2819
+ "epoch": 0.78515625,
2820
+ "grad_norm": 0.37143930094659405,
2821
+ "learning_rate": 2.8064673631357914e-05,
2822
+ "loss": 1.1031,
2823
+ "step": 402
2824
+ },
2825
+ {
2826
+ "epoch": 0.787109375,
2827
+ "grad_norm": 0.37217736788218464,
2828
+ "learning_rate": 2.8006200470869996e-05,
2829
+ "loss": 1.0837,
2830
+ "step": 403
2831
+ },
2832
+ {
2833
+ "epoch": 0.7890625,
2834
+ "grad_norm": 0.4976469620168046,
2835
+ "learning_rate": 2.794764570183611e-05,
2836
+ "loss": 1.1485,
2837
+ "step": 404
2838
+ },
2839
+ {
2840
+ "epoch": 0.791015625,
2841
+ "grad_norm": 0.4118640178274368,
2842
+ "learning_rate": 2.788900992111485e-05,
2843
+ "loss": 1.0149,
2844
+ "step": 405
2845
+ },
2846
+ {
2847
+ "epoch": 0.79296875,
2848
+ "grad_norm": 0.4876334794131612,
2849
+ "learning_rate": 2.7830293726390584e-05,
2850
+ "loss": 1.0814,
2851
+ "step": 406
2852
+ },
2853
+ {
2854
+ "epoch": 0.794921875,
2855
+ "grad_norm": 0.39552602320591645,
2856
+ "learning_rate": 2.7771497716167334e-05,
2857
+ "loss": 1.0316,
2858
+ "step": 407
2859
+ },
2860
+ {
2861
+ "epoch": 0.796875,
2862
+ "grad_norm": 0.3666660618337925,
2863
+ "learning_rate": 2.771262248976272e-05,
2864
+ "loss": 1.1006,
2865
+ "step": 408
2866
+ },
2867
+ {
2868
+ "epoch": 0.798828125,
2869
+ "grad_norm": 0.4084835818544231,
2870
+ "learning_rate": 2.7653668647301797e-05,
2871
+ "loss": 1.1573,
2872
+ "step": 409
2873
+ },
2874
+ {
2875
+ "epoch": 0.80078125,
2876
+ "grad_norm": 0.42026908788757056,
2877
+ "learning_rate": 2.7594636789710992e-05,
2878
+ "loss": 1.1005,
2879
+ "step": 410
2880
+ },
2881
+ {
2882
+ "epoch": 0.802734375,
2883
+ "grad_norm": 0.4260753401631911,
2884
+ "learning_rate": 2.753552751871195e-05,
2885
+ "loss": 1.0693,
2886
+ "step": 411
2887
+ },
2888
+ {
2889
+ "epoch": 0.8046875,
2890
+ "grad_norm": 0.3638242310551269,
2891
+ "learning_rate": 2.7476341436815377e-05,
2892
+ "loss": 1.0464,
2893
+ "step": 412
2894
+ },
2895
+ {
2896
+ "epoch": 0.806640625,
2897
+ "grad_norm": 0.3709057452758752,
2898
+ "learning_rate": 2.7417079147314965e-05,
2899
+ "loss": 1.0302,
2900
+ "step": 413
2901
+ },
2902
+ {
2903
+ "epoch": 0.80859375,
2904
+ "grad_norm": 0.3881489168967299,
2905
+ "learning_rate": 2.735774125428117e-05,
2906
+ "loss": 1.0273,
2907
+ "step": 414
2908
+ },
2909
+ {
2910
+ "epoch": 0.810546875,
2911
+ "grad_norm": 0.3540248781421392,
2912
+ "learning_rate": 2.729832836255511e-05,
2913
+ "loss": 1.0526,
2914
+ "step": 415
2915
+ },
2916
+ {
2917
+ "epoch": 0.8125,
2918
+ "grad_norm": 0.4031356501380205,
2919
+ "learning_rate": 2.723884107774236e-05,
2920
+ "loss": 1.0392,
2921
+ "step": 416
2922
+ },
2923
+ {
2924
+ "epoch": 0.814453125,
2925
+ "grad_norm": 0.4213724427608797,
2926
+ "learning_rate": 2.717928000620681e-05,
2927
+ "loss": 1.1335,
2928
+ "step": 417
2929
+ },
2930
+ {
2931
+ "epoch": 0.81640625,
2932
+ "grad_norm": 0.38457290513987724,
2933
+ "learning_rate": 2.7119645755064468e-05,
2934
+ "loss": 1.1109,
2935
+ "step": 418
2936
+ },
2937
+ {
2938
+ "epoch": 0.818359375,
2939
+ "grad_norm": 0.3970191569510665,
2940
+ "learning_rate": 2.7059938932177264e-05,
2941
+ "loss": 1.1087,
2942
+ "step": 419
2943
+ },
2944
+ {
2945
+ "epoch": 0.8203125,
2946
+ "grad_norm": 0.42376486272155184,
2947
+ "learning_rate": 2.700016014614687e-05,
2948
+ "loss": 1.108,
2949
+ "step": 420
2950
+ },
2951
+ {
2952
+ "epoch": 0.822265625,
2953
+ "grad_norm": 0.4648805287473145,
2954
+ "learning_rate": 2.6940310006308502e-05,
2955
+ "loss": 1.1895,
2956
+ "step": 421
2957
+ },
2958
+ {
2959
+ "epoch": 0.82421875,
2960
+ "grad_norm": 0.4219670118710678,
2961
+ "learning_rate": 2.688038912272468e-05,
2962
+ "loss": 1.1492,
2963
+ "step": 422
2964
+ },
2965
+ {
2966
+ "epoch": 0.826171875,
2967
+ "grad_norm": 0.41710413834658855,
2968
+ "learning_rate": 2.682039810617903e-05,
2969
+ "loss": 1.1072,
2970
+ "step": 423
2971
+ },
2972
+ {
2973
+ "epoch": 0.828125,
2974
+ "grad_norm": 0.41979400770447894,
2975
+ "learning_rate": 2.6760337568170056e-05,
2976
+ "loss": 1.0904,
2977
+ "step": 424
2978
+ },
2979
+ {
2980
+ "epoch": 0.830078125,
2981
+ "grad_norm": 0.6395242461570778,
2982
+ "learning_rate": 2.6700208120904925e-05,
2983
+ "loss": 0.9924,
2984
+ "step": 425
2985
+ },
2986
+ {
2987
+ "epoch": 0.83203125,
2988
+ "grad_norm": 0.3633335504856954,
2989
+ "learning_rate": 2.6640010377293174e-05,
2990
+ "loss": 1.014,
2991
+ "step": 426
2992
+ },
2993
+ {
2994
+ "epoch": 0.833984375,
2995
+ "grad_norm": 0.4464511956431912,
2996
+ "learning_rate": 2.6579744950940514e-05,
2997
+ "loss": 1.0734,
2998
+ "step": 427
2999
+ },
3000
+ {
3001
+ "epoch": 0.8359375,
3002
+ "grad_norm": 0.4687781979743879,
3003
+ "learning_rate": 2.6519412456142572e-05,
3004
+ "loss": 1.0249,
3005
+ "step": 428
3006
+ },
3007
+ {
3008
+ "epoch": 0.837890625,
3009
+ "grad_norm": 0.49738564921372447,
3010
+ "learning_rate": 2.6459013507878588e-05,
3011
+ "loss": 1.0612,
3012
+ "step": 429
3013
+ },
3014
+ {
3015
+ "epoch": 0.83984375,
3016
+ "grad_norm": 0.4494079640359484,
3017
+ "learning_rate": 2.639854872180518e-05,
3018
+ "loss": 1.026,
3019
+ "step": 430
3020
+ },
3021
+ {
3022
+ "epoch": 0.841796875,
3023
+ "grad_norm": 0.39318026641514375,
3024
+ "learning_rate": 2.6338018714250084e-05,
3025
+ "loss": 0.9957,
3026
+ "step": 431
3027
+ },
3028
+ {
3029
+ "epoch": 0.84375,
3030
+ "grad_norm": 0.4142115852538159,
3031
+ "learning_rate": 2.6277424102205817e-05,
3032
+ "loss": 1.0505,
3033
+ "step": 432
3034
+ },
3035
+ {
3036
+ "epoch": 0.845703125,
3037
+ "grad_norm": 0.5472076626281186,
3038
+ "learning_rate": 2.6216765503323444e-05,
3039
+ "loss": 1.0888,
3040
+ "step": 433
3041
+ },
3042
+ {
3043
+ "epoch": 0.84765625,
3044
+ "grad_norm": 0.45879911363611803,
3045
+ "learning_rate": 2.615604353590625e-05,
3046
+ "loss": 1.2271,
3047
+ "step": 434
3048
+ },
3049
+ {
3050
+ "epoch": 0.849609375,
3051
+ "grad_norm": 0.3879148923020066,
3052
+ "learning_rate": 2.6095258818903443e-05,
3053
+ "loss": 1.0789,
3054
+ "step": 435
3055
+ },
3056
+ {
3057
+ "epoch": 0.8515625,
3058
+ "grad_norm": 0.3623048445133421,
3059
+ "learning_rate": 2.603441197190385e-05,
3060
+ "loss": 1.1001,
3061
+ "step": 436
3062
+ },
3063
+ {
3064
+ "epoch": 0.853515625,
3065
+ "grad_norm": 0.4034291862610704,
3066
+ "learning_rate": 2.5973503615129607e-05,
3067
+ "loss": 1.0657,
3068
+ "step": 437
3069
+ },
3070
+ {
3071
+ "epoch": 0.85546875,
3072
+ "grad_norm": 0.40641069832633525,
3073
+ "learning_rate": 2.591253436942982e-05,
3074
+ "loss": 1.0971,
3075
+ "step": 438
3076
+ },
3077
+ {
3078
+ "epoch": 0.857421875,
3079
+ "grad_norm": 0.4203758291885779,
3080
+ "learning_rate": 2.5851504856274252e-05,
3081
+ "loss": 1.0488,
3082
+ "step": 439
3083
+ },
3084
+ {
3085
+ "epoch": 0.859375,
3086
+ "grad_norm": 0.4126884109160508,
3087
+ "learning_rate": 2.5790415697746976e-05,
3088
+ "loss": 1.0095,
3089
+ "step": 440
3090
+ },
3091
+ {
3092
+ "epoch": 0.861328125,
3093
+ "grad_norm": 0.4078387530750107,
3094
+ "learning_rate": 2.572926751654005e-05,
3095
+ "loss": 1.0758,
3096
+ "step": 441
3097
+ },
3098
+ {
3099
+ "epoch": 0.86328125,
3100
+ "grad_norm": 0.3817629694236213,
3101
+ "learning_rate": 2.5668060935947144e-05,
3102
+ "loss": 1.1348,
3103
+ "step": 442
3104
+ },
3105
+ {
3106
+ "epoch": 0.865234375,
3107
+ "grad_norm": 0.409692718707719,
3108
+ "learning_rate": 2.5606796579857223e-05,
3109
+ "loss": 1.0567,
3110
+ "step": 443
3111
+ },
3112
+ {
3113
+ "epoch": 0.8671875,
3114
+ "grad_norm": 0.4701176256570698,
3115
+ "learning_rate": 2.554547507274816e-05,
3116
+ "loss": 1.0535,
3117
+ "step": 444
3118
+ },
3119
+ {
3120
+ "epoch": 0.869140625,
3121
+ "grad_norm": 0.4055365903869681,
3122
+ "learning_rate": 2.5484097039680364e-05,
3123
+ "loss": 1.0327,
3124
+ "step": 445
3125
+ },
3126
+ {
3127
+ "epoch": 0.87109375,
3128
+ "grad_norm": 0.4185308510496096,
3129
+ "learning_rate": 2.5422663106290446e-05,
3130
+ "loss": 1.0917,
3131
+ "step": 446
3132
+ },
3133
+ {
3134
+ "epoch": 0.873046875,
3135
+ "grad_norm": 0.35436315376257477,
3136
+ "learning_rate": 2.5361173898784793e-05,
3137
+ "loss": 0.9629,
3138
+ "step": 447
3139
+ },
3140
+ {
3141
+ "epoch": 0.875,
3142
+ "grad_norm": 0.40368860473897683,
3143
+ "learning_rate": 2.529963004393324e-05,
3144
+ "loss": 1.1186,
3145
+ "step": 448
3146
+ },
3147
+ {
3148
+ "epoch": 0.876953125,
3149
+ "grad_norm": 0.41933105267599274,
3150
+ "learning_rate": 2.5238032169062615e-05,
3151
+ "loss": 1.0612,
3152
+ "step": 449
3153
+ },
3154
+ {
3155
+ "epoch": 0.87890625,
3156
+ "grad_norm": 0.3920136702588332,
3157
+ "learning_rate": 2.5176380902050418e-05,
3158
+ "loss": 1.0218,
3159
+ "step": 450
3160
+ },
3161
+ {
3162
+ "epoch": 0.880859375,
3163
+ "grad_norm": 0.3924826056587098,
3164
+ "learning_rate": 2.511467687131836e-05,
3165
+ "loss": 1.0235,
3166
+ "step": 451
3167
+ },
3168
+ {
3169
+ "epoch": 0.8828125,
3170
+ "grad_norm": 0.3713296557429479,
3171
+ "learning_rate": 2.505292070582599e-05,
3172
+ "loss": 1.031,
3173
+ "step": 452
3174
+ },
3175
+ {
3176
+ "epoch": 0.884765625,
3177
+ "grad_norm": 0.4144024885541483,
3178
+ "learning_rate": 2.4991113035064275e-05,
3179
+ "loss": 1.1098,
3180
+ "step": 453
3181
+ },
3182
+ {
3183
+ "epoch": 0.88671875,
3184
+ "grad_norm": 0.3953030954711052,
3185
+ "learning_rate": 2.492925448904919e-05,
3186
+ "loss": 1.0298,
3187
+ "step": 454
3188
+ },
3189
+ {
3190
+ "epoch": 0.888671875,
3191
+ "grad_norm": 0.40979901345360326,
3192
+ "learning_rate": 2.4867345698315264e-05,
3193
+ "loss": 1.087,
3194
+ "step": 455
3195
+ },
3196
+ {
3197
+ "epoch": 0.890625,
3198
+ "grad_norm": 0.42099406843050524,
3199
+ "learning_rate": 2.4805387293909214e-05,
3200
+ "loss": 1.0307,
3201
+ "step": 456
3202
+ },
3203
+ {
3204
+ "epoch": 0.892578125,
3205
+ "grad_norm": 0.4824392395386347,
3206
+ "learning_rate": 2.4743379907383466e-05,
3207
+ "loss": 1.0751,
3208
+ "step": 457
3209
+ },
3210
+ {
3211
+ "epoch": 0.89453125,
3212
+ "grad_norm": 0.43303194714488125,
3213
+ "learning_rate": 2.46813241707897e-05,
3214
+ "loss": 1.0852,
3215
+ "step": 458
3216
+ },
3217
+ {
3218
+ "epoch": 0.896484375,
3219
+ "grad_norm": 0.42139104734956734,
3220
+ "learning_rate": 2.4619220716672487e-05,
3221
+ "loss": 1.0121,
3222
+ "step": 459
3223
+ },
3224
+ {
3225
+ "epoch": 0.8984375,
3226
+ "grad_norm": 0.4037004594251964,
3227
+ "learning_rate": 2.4557070178062755e-05,
3228
+ "loss": 1.1123,
3229
+ "step": 460
3230
+ },
3231
+ {
3232
+ "epoch": 0.900390625,
3233
+ "grad_norm": 0.43814766094211854,
3234
+ "learning_rate": 2.4494873188471378e-05,
3235
+ "loss": 1.0854,
3236
+ "step": 461
3237
+ },
3238
+ {
3239
+ "epoch": 0.90234375,
3240
+ "grad_norm": 0.37549428576364635,
3241
+ "learning_rate": 2.443263038188272e-05,
3242
+ "loss": 1.021,
3243
+ "step": 462
3244
+ },
3245
+ {
3246
+ "epoch": 0.904296875,
3247
+ "grad_norm": 0.4601484439948765,
3248
+ "learning_rate": 2.437034239274816e-05,
3249
+ "loss": 1.0255,
3250
+ "step": 463
3251
+ },
3252
+ {
3253
+ "epoch": 0.90625,
3254
+ "grad_norm": 0.408442323524795,
3255
+ "learning_rate": 2.430800985597963e-05,
3256
+ "loss": 1.1535,
3257
+ "step": 464
3258
+ },
3259
+ {
3260
+ "epoch": 0.908203125,
3261
+ "grad_norm": 0.3770639784598037,
3262
+ "learning_rate": 2.4245633406943146e-05,
3263
+ "loss": 1.0092,
3264
+ "step": 465
3265
+ },
3266
+ {
3267
+ "epoch": 0.91015625,
3268
+ "grad_norm": 0.39632696571553727,
3269
+ "learning_rate": 2.418321368145234e-05,
3270
+ "loss": 1.0392,
3271
+ "step": 466
3272
+ },
3273
+ {
3274
+ "epoch": 0.912109375,
3275
+ "grad_norm": 0.3900617301120619,
3276
+ "learning_rate": 2.412075131576194e-05,
3277
+ "loss": 0.9926,
3278
+ "step": 467
3279
+ },
3280
+ {
3281
+ "epoch": 0.9140625,
3282
+ "grad_norm": 0.3942202959616746,
3283
+ "learning_rate": 2.4058246946561337e-05,
3284
+ "loss": 0.9972,
3285
+ "step": 468
3286
+ },
3287
+ {
3288
+ "epoch": 0.916015625,
3289
+ "grad_norm": 0.3509404351888746,
3290
+ "learning_rate": 2.3995701210968068e-05,
3291
+ "loss": 0.988,
3292
+ "step": 469
3293
+ },
3294
+ {
3295
+ "epoch": 0.91796875,
3296
+ "grad_norm": 0.4168690258420827,
3297
+ "learning_rate": 2.393311474652131e-05,
3298
+ "loss": 1.1025,
3299
+ "step": 470
3300
+ },
3301
+ {
3302
+ "epoch": 0.919921875,
3303
+ "grad_norm": 0.46200933426792423,
3304
+ "learning_rate": 2.3870488191175413e-05,
3305
+ "loss": 1.0633,
3306
+ "step": 471
3307
+ },
3308
+ {
3309
+ "epoch": 0.921875,
3310
+ "grad_norm": 0.35711987014827834,
3311
+ "learning_rate": 2.380782218329337e-05,
3312
+ "loss": 1.0525,
3313
+ "step": 472
3314
+ },
3315
+ {
3316
+ "epoch": 0.923828125,
3317
+ "grad_norm": 0.4031204434850072,
3318
+ "learning_rate": 2.3745117361640328e-05,
3319
+ "loss": 1.1179,
3320
+ "step": 473
3321
+ },
3322
+ {
3323
+ "epoch": 0.92578125,
3324
+ "grad_norm": 0.38258772862694423,
3325
+ "learning_rate": 2.3682374365377055e-05,
3326
+ "loss": 1.1029,
3327
+ "step": 474
3328
+ },
3329
+ {
3330
+ "epoch": 0.927734375,
3331
+ "grad_norm": 0.4045956763131697,
3332
+ "learning_rate": 2.361959383405346e-05,
3333
+ "loss": 1.1135,
3334
+ "step": 475
3335
+ },
3336
+ {
3337
+ "epoch": 0.9296875,
3338
+ "grad_norm": 0.39473113885867483,
3339
+ "learning_rate": 2.3556776407602038e-05,
3340
+ "loss": 0.9916,
3341
+ "step": 476
3342
+ },
3343
+ {
3344
+ "epoch": 0.931640625,
3345
+ "grad_norm": 0.38643556532939677,
3346
+ "learning_rate": 2.349392272633136e-05,
3347
+ "loss": 1.0741,
3348
+ "step": 477
3349
+ },
3350
+ {
3351
+ "epoch": 0.93359375,
3352
+ "grad_norm": 0.42567439419557046,
3353
+ "learning_rate": 2.343103343091957e-05,
3354
+ "loss": 0.9976,
3355
+ "step": 478
3356
+ },
3357
+ {
3358
+ "epoch": 0.935546875,
3359
+ "grad_norm": 0.3885877057479704,
3360
+ "learning_rate": 2.3368109162407802e-05,
3361
+ "loss": 1.0954,
3362
+ "step": 479
3363
+ },
3364
+ {
3365
+ "epoch": 0.9375,
3366
+ "grad_norm": 0.3684575524697125,
3367
+ "learning_rate": 2.33051505621937e-05,
3368
+ "loss": 1.1091,
3369
+ "step": 480
3370
+ },
3371
+ {
3372
+ "epoch": 0.939453125,
3373
+ "grad_norm": 0.4053221637918515,
3374
+ "learning_rate": 2.3242158272024852e-05,
3375
+ "loss": 1.0335,
3376
+ "step": 481
3377
+ },
3378
+ {
3379
+ "epoch": 0.94140625,
3380
+ "grad_norm": 0.3769352607947545,
3381
+ "learning_rate": 2.3179132933992247e-05,
3382
+ "loss": 1.0159,
3383
+ "step": 482
3384
+ },
3385
+ {
3386
+ "epoch": 0.943359375,
3387
+ "grad_norm": 0.3985369025141676,
3388
+ "learning_rate": 2.3116075190523736e-05,
3389
+ "loss": 1.09,
3390
+ "step": 483
3391
+ },
3392
+ {
3393
+ "epoch": 0.9453125,
3394
+ "grad_norm": 0.3935123859622257,
3395
+ "learning_rate": 2.305298568437749e-05,
3396
+ "loss": 0.9963,
3397
+ "step": 484
3398
+ },
3399
+ {
3400
+ "epoch": 0.947265625,
3401
+ "grad_norm": 0.4196014578008531,
3402
+ "learning_rate": 2.2989865058635452e-05,
3403
+ "loss": 1.0499,
3404
+ "step": 485
3405
+ },
3406
+ {
3407
+ "epoch": 0.94921875,
3408
+ "grad_norm": 0.419476500729373,
3409
+ "learning_rate": 2.2926713956696745e-05,
3410
+ "loss": 1.0371,
3411
+ "step": 486
3412
+ },
3413
+ {
3414
+ "epoch": 0.951171875,
3415
+ "grad_norm": 0.3808077428531366,
3416
+ "learning_rate": 2.2863533022271162e-05,
3417
+ "loss": 1.1248,
3418
+ "step": 487
3419
+ },
3420
+ {
3421
+ "epoch": 0.953125,
3422
+ "grad_norm": 0.3999093853366225,
3423
+ "learning_rate": 2.2800322899372586e-05,
3424
+ "loss": 1.064,
3425
+ "step": 488
3426
+ },
3427
+ {
3428
+ "epoch": 0.955078125,
3429
+ "grad_norm": 0.40587143499383244,
3430
+ "learning_rate": 2.2737084232312405e-05,
3431
+ "loss": 1.0637,
3432
+ "step": 489
3433
+ },
3434
+ {
3435
+ "epoch": 0.95703125,
3436
+ "grad_norm": 0.3789458557177568,
3437
+ "learning_rate": 2.267381766569297e-05,
3438
+ "loss": 0.9901,
3439
+ "step": 490
3440
+ },
3441
+ {
3442
+ "epoch": 0.958984375,
3443
+ "grad_norm": 0.3888268213746482,
3444
+ "learning_rate": 2.261052384440104e-05,
3445
+ "loss": 1.1481,
3446
+ "step": 491
3447
+ },
3448
+ {
3449
+ "epoch": 0.9609375,
3450
+ "grad_norm": 0.3560941746806575,
3451
+ "learning_rate": 2.254720341360114e-05,
3452
+ "loss": 1.0011,
3453
+ "step": 492
3454
+ },
3455
+ {
3456
+ "epoch": 0.962890625,
3457
+ "grad_norm": 0.4117369944130386,
3458
+ "learning_rate": 2.2483857018729066e-05,
3459
+ "loss": 1.0988,
3460
+ "step": 493
3461
+ },
3462
+ {
3463
+ "epoch": 0.96484375,
3464
+ "grad_norm": 0.3603669115916744,
3465
+ "learning_rate": 2.2420485305485264e-05,
3466
+ "loss": 1.0564,
3467
+ "step": 494
3468
+ },
3469
+ {
3470
+ "epoch": 0.966796875,
3471
+ "grad_norm": 0.45357516371473544,
3472
+ "learning_rate": 2.2357088919828243e-05,
3473
+ "loss": 1.1119,
3474
+ "step": 495
3475
+ },
3476
+ {
3477
+ "epoch": 0.96875,
3478
+ "grad_norm": 0.37884120057564985,
3479
+ "learning_rate": 2.2293668507968015e-05,
3480
+ "loss": 1.0883,
3481
+ "step": 496
3482
+ },
3483
+ {
3484
+ "epoch": 0.970703125,
3485
+ "grad_norm": 0.8383895359995993,
3486
+ "learning_rate": 2.2230224716359482e-05,
3487
+ "loss": 1.0815,
3488
+ "step": 497
3489
+ },
3490
+ {
3491
+ "epoch": 0.97265625,
3492
+ "grad_norm": 0.38866465119590105,
3493
+ "learning_rate": 2.2166758191695866e-05,
3494
+ "loss": 1.0174,
3495
+ "step": 498
3496
+ },
3497
+ {
3498
+ "epoch": 0.974609375,
3499
+ "grad_norm": 0.5709670798963341,
3500
+ "learning_rate": 2.210326958090212e-05,
3501
+ "loss": 1.0009,
3502
+ "step": 499
3503
+ },
3504
+ {
3505
+ "epoch": 0.9765625,
3506
+ "grad_norm": 0.3660396139993819,
3507
+ "learning_rate": 2.203975953112831e-05,
3508
+ "loss": 1.095,
3509
+ "step": 500
3510
+ },
3511
+ {
3512
+ "epoch": 0.978515625,
3513
+ "grad_norm": 0.3674603706471189,
3514
+ "learning_rate": 2.1976228689743044e-05,
3515
+ "loss": 0.9867,
3516
+ "step": 501
3517
+ },
3518
+ {
3519
+ "epoch": 0.98046875,
3520
+ "grad_norm": 0.9419848479362365,
3521
+ "learning_rate": 2.1912677704326847e-05,
3522
+ "loss": 1.2754,
3523
+ "step": 502
3524
+ },
3525
+ {
3526
+ "epoch": 0.982421875,
3527
+ "grad_norm": 0.3969899221243403,
3528
+ "learning_rate": 2.18491072226656e-05,
3529
+ "loss": 1.0077,
3530
+ "step": 503
3531
+ },
3532
+ {
3533
+ "epoch": 0.984375,
3534
+ "grad_norm": 0.4124566542707438,
3535
+ "learning_rate": 2.1785517892743887e-05,
3536
+ "loss": 1.0525,
3537
+ "step": 504
3538
+ },
3539
+ {
3540
+ "epoch": 0.986328125,
3541
+ "grad_norm": 0.41362237633561144,
3542
+ "learning_rate": 2.1721910362738438e-05,
3543
+ "loss": 1.0197,
3544
+ "step": 505
3545
+ },
3546
+ {
3547
+ "epoch": 0.98828125,
3548
+ "grad_norm": 0.4476968790164685,
3549
+ "learning_rate": 2.165828528101148e-05,
3550
+ "loss": 0.9919,
3551
+ "step": 506
3552
+ },
3553
+ {
3554
+ "epoch": 0.990234375,
3555
+ "grad_norm": 0.6290964144760007,
3556
+ "learning_rate": 2.1594643296104157e-05,
3557
+ "loss": 1.0917,
3558
+ "step": 507
3559
+ },
3560
+ {
3561
+ "epoch": 0.9921875,
3562
+ "grad_norm": 0.3973126449794871,
3563
+ "learning_rate": 2.153098505672992e-05,
3564
+ "loss": 1.1005,
3565
+ "step": 508
3566
+ },
3567
+ {
3568
+ "epoch": 0.994140625,
3569
+ "grad_norm": 0.4323540168560289,
3570
+ "learning_rate": 2.1467311211767873e-05,
3571
+ "loss": 1.0063,
3572
+ "step": 509
3573
+ },
3574
+ {
3575
+ "epoch": 0.99609375,
3576
+ "grad_norm": 0.5809974059109054,
3577
+ "learning_rate": 2.140362241025623e-05,
3578
+ "loss": 1.145,
3579
+ "step": 510
3580
+ },
3581
+ {
3582
+ "epoch": 0.998046875,
3583
+ "grad_norm": 0.38472241580582794,
3584
+ "learning_rate": 2.1339919301385636e-05,
3585
+ "loss": 0.9965,
3586
+ "step": 511
3587
+ },
3588
+ {
3589
+ "epoch": 1.0,
3590
+ "grad_norm": 0.4053721417966819,
3591
+ "learning_rate": 2.1276202534492566e-05,
3592
+ "loss": 1.0342,
3593
+ "step": 512
3594
+ }
3595
+ ],
3596
+ "logging_steps": 1,
3597
+ "max_steps": 1024,
3598
+ "num_input_tokens_seen": 0,
3599
+ "num_train_epochs": 2,
3600
+ "save_steps": 256,
3601
+ "stateful_callbacks": {
3602
+ "TrainerControl": {
3603
+ "args": {
3604
+ "should_epoch_stop": false,
3605
+ "should_evaluate": false,
3606
+ "should_log": false,
3607
+ "should_save": true,
3608
+ "should_training_stop": false
3609
+ },
3610
+ "attributes": {}
3611
+ }
3612
+ },
3613
+ "total_flos": 1062128232431616.0,
3614
+ "train_batch_size": 1,
3615
+ "trial_name": null,
3616
+ "trial_params": null
3617
+ }
checkpoint-512/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dcbfa469b9202a5ee04539c5e32b6e52ff3ea81414f858ea729dd1dfc1c96091
3
+ size 8248
checkpoint-512/zero_to_fp32.py ADDED
@@ -0,0 +1,674 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example:
14
+ # python zero_to_fp32.py . output_dir/
15
+ # or
16
+ # python zero_to_fp32.py . output_dir/ --safe_serialization
17
+
18
+ import argparse
19
+ import torch
20
+ import glob
21
+ import math
22
+ import os
23
+ import re
24
+ import json
25
+ from tqdm import tqdm
26
+ from collections import OrderedDict
27
+ from dataclasses import dataclass
28
+
29
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
30
+ # DeepSpeed data structures it has to be available in the current python environment.
31
+ from deepspeed.utils import logger
32
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
33
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
34
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
35
+
36
+
37
+ @dataclass
38
+ class zero_model_state:
39
+ buffers: dict()
40
+ param_shapes: dict()
41
+ shared_params: list
42
+ ds_version: int
43
+ frozen_param_shapes: dict()
44
+ frozen_param_fragments: dict()
45
+
46
+
47
+ debug = 0
48
+
49
+ # load to cpu
50
+ device = torch.device('cpu')
51
+
52
+
53
+ def atoi(text):
54
+ return int(text) if text.isdigit() else text
55
+
56
+
57
+ def natural_keys(text):
58
+ '''
59
+ alist.sort(key=natural_keys) sorts in human order
60
+ http://nedbatchelder.com/blog/200712/human_sorting.html
61
+ (See Toothy's implementation in the comments)
62
+ '''
63
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
64
+
65
+
66
+ def get_model_state_file(checkpoint_dir, zero_stage):
67
+ if not os.path.isdir(checkpoint_dir):
68
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
69
+
70
+ # there should be only one file
71
+ if zero_stage <= 2:
72
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
73
+ elif zero_stage == 3:
74
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
75
+
76
+ if not os.path.exists(file):
77
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
78
+
79
+ return file
80
+
81
+
82
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
83
+ # XXX: need to test that this simple glob rule works for multi-node setup too
84
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
85
+
86
+ if len(ckpt_files) == 0:
87
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
88
+
89
+ return ckpt_files
90
+
91
+
92
+ def get_optim_files(checkpoint_dir):
93
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
94
+
95
+
96
+ def get_model_state_files(checkpoint_dir):
97
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
98
+
99
+
100
+ def parse_model_states(files):
101
+ zero_model_states = []
102
+ for file in files:
103
+ state_dict = torch.load(file, map_location=device)
104
+
105
+ if BUFFER_NAMES not in state_dict:
106
+ raise ValueError(f"{file} is not a model state checkpoint")
107
+ buffer_names = state_dict[BUFFER_NAMES]
108
+ if debug:
109
+ print("Found buffers:", buffer_names)
110
+
111
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
112
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
113
+ param_shapes = state_dict[PARAM_SHAPES]
114
+
115
+ # collect parameters that are included in param_shapes
116
+ param_names = []
117
+ for s in param_shapes:
118
+ for name in s.keys():
119
+ param_names.append(name)
120
+
121
+ # update with frozen parameters
122
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
123
+ if frozen_param_shapes is not None:
124
+ if debug:
125
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
126
+ param_names += list(frozen_param_shapes.keys())
127
+
128
+ # handle shared params
129
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
130
+
131
+ ds_version = state_dict.get(DS_VERSION, None)
132
+
133
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
134
+
135
+ z_model_state = zero_model_state(buffers=buffers,
136
+ param_shapes=param_shapes,
137
+ shared_params=shared_params,
138
+ ds_version=ds_version,
139
+ frozen_param_shapes=frozen_param_shapes,
140
+ frozen_param_fragments=frozen_param_fragments)
141
+ zero_model_states.append(z_model_state)
142
+
143
+ return zero_model_states
144
+
145
+
146
+ def parse_optim_states(files, ds_checkpoint_dir):
147
+ total_files = len(files)
148
+ state_dicts = []
149
+ for f in files:
150
+ state_dict = torch.load(f, map_location=device)
151
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
152
+ # and also handle the case where it was already removed by another helper script
153
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
154
+ state_dicts.append(state_dict)
155
+
156
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
157
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
158
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
159
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
160
+
161
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
162
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
163
+ # use the max of the partition_count to get the dp world_size.
164
+
165
+ if type(world_size) is list:
166
+ world_size = max(world_size)
167
+
168
+ if world_size != total_files:
169
+ raise ValueError(
170
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
171
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
172
+ )
173
+
174
+ # the groups are named differently in each stage
175
+ if zero_stage <= 2:
176
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
177
+ elif zero_stage == 3:
178
+ fp32_groups_key = FP32_FLAT_GROUPS
179
+ else:
180
+ raise ValueError(f"unknown zero stage {zero_stage}")
181
+
182
+ if zero_stage <= 2:
183
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
184
+ elif zero_stage == 3:
185
+ # if there is more than one param group, there will be multiple flattened tensors - one
186
+ # flattened tensor per group - for simplicity merge them into a single tensor
187
+ #
188
+ # XXX: could make the script more memory efficient for when there are multiple groups - it
189
+ # will require matching the sub-lists of param_shapes for each param group flattened tensor
190
+
191
+ fp32_flat_groups = [
192
+ torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
193
+ ]
194
+
195
+ return zero_stage, world_size, fp32_flat_groups
196
+
197
+
198
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
199
+ """
200
+ Returns fp32 state_dict reconstructed from ds checkpoint
201
+
202
+ Args:
203
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
204
+
205
+ """
206
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
207
+
208
+ optim_files = get_optim_files(ds_checkpoint_dir)
209
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
210
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
211
+
212
+ model_files = get_model_state_files(ds_checkpoint_dir)
213
+
214
+ zero_model_states = parse_model_states(model_files)
215
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
216
+
217
+ if zero_stage <= 2:
218
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
219
+ exclude_frozen_parameters)
220
+ elif zero_stage == 3:
221
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
222
+ exclude_frozen_parameters)
223
+
224
+
225
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
226
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
227
+ return
228
+
229
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
230
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
231
+
232
+ if debug:
233
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
234
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
235
+
236
+ wanted_params = len(frozen_param_shapes)
237
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
238
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
239
+ print(f'Frozen params: Have {avail_numel} numels to process.')
240
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
241
+
242
+ total_params = 0
243
+ total_numel = 0
244
+ for name, shape in frozen_param_shapes.items():
245
+ total_params += 1
246
+ unpartitioned_numel = shape.numel()
247
+ total_numel += unpartitioned_numel
248
+
249
+ state_dict[name] = frozen_param_fragments[name]
250
+
251
+ if debug:
252
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
253
+
254
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
255
+
256
+
257
+ def _has_callable(obj, fn):
258
+ attr = getattr(obj, fn, None)
259
+ return callable(attr)
260
+
261
+
262
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
263
+ param_shapes = zero_model_states[0].param_shapes
264
+
265
+ # Reconstruction protocol:
266
+ #
267
+ # XXX: document this
268
+
269
+ if debug:
270
+ for i in range(world_size):
271
+ for j in range(len(fp32_flat_groups[0])):
272
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
273
+
274
+ # XXX: memory usage doubles here (zero2)
275
+ num_param_groups = len(fp32_flat_groups[0])
276
+ merged_single_partition_of_fp32_groups = []
277
+ for i in range(num_param_groups):
278
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
279
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
280
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
281
+ avail_numel = sum(
282
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
283
+
284
+ if debug:
285
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
286
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
287
+ # not asserting if there is a mismatch due to possible padding
288
+ print(f"Have {avail_numel} numels to process.")
289
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
290
+
291
+ # params
292
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
293
+ # out-of-core computing solution
294
+ total_numel = 0
295
+ total_params = 0
296
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
297
+ offset = 0
298
+ avail_numel = full_single_fp32_vector.numel()
299
+ for name, shape in shapes.items():
300
+
301
+ unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
302
+ total_numel += unpartitioned_numel
303
+ total_params += 1
304
+
305
+ if debug:
306
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
307
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
308
+ offset += unpartitioned_numel
309
+
310
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
311
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
312
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
313
+ # live optimizer object, so we are checking that the numbers are within the right range
314
+ align_to = 2 * world_size
315
+
316
+ def zero2_align(x):
317
+ return align_to * math.ceil(x / align_to)
318
+
319
+ if debug:
320
+ print(f"original offset={offset}, avail_numel={avail_numel}")
321
+
322
+ offset = zero2_align(offset)
323
+ avail_numel = zero2_align(avail_numel)
324
+
325
+ if debug:
326
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
327
+
328
+ # Sanity check
329
+ if offset != avail_numel:
330
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
331
+
332
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
333
+
334
+
335
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
336
+ exclude_frozen_parameters):
337
+ state_dict = OrderedDict()
338
+
339
+ # buffers
340
+ buffers = zero_model_states[0].buffers
341
+ state_dict.update(buffers)
342
+ if debug:
343
+ print(f"added {len(buffers)} buffers")
344
+
345
+ if not exclude_frozen_parameters:
346
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
347
+
348
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
349
+
350
+ # recover shared parameters
351
+ for pair in zero_model_states[0].shared_params:
352
+ if pair[1] in state_dict:
353
+ state_dict[pair[0]] = state_dict[pair[1]]
354
+
355
+ return state_dict
356
+
357
+
358
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
359
+ remainder = unpartitioned_numel % world_size
360
+ padding_numel = (world_size - remainder) if remainder else 0
361
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
362
+ return partitioned_numel, padding_numel
363
+
364
+
365
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
366
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
367
+ return
368
+
369
+ if debug:
370
+ for i in range(world_size):
371
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
372
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
373
+
374
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
375
+ wanted_params = len(frozen_param_shapes)
376
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
377
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
378
+ print(f'Frozen params: Have {avail_numel} numels to process.')
379
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
380
+
381
+ total_params = 0
382
+ total_numel = 0
383
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
384
+ total_params += 1
385
+ unpartitioned_numel = shape.numel()
386
+ total_numel += unpartitioned_numel
387
+
388
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
389
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
390
+
391
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
392
+
393
+ if debug:
394
+ print(
395
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
396
+ )
397
+
398
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
399
+
400
+
401
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
402
+ param_shapes = zero_model_states[0].param_shapes
403
+ avail_numel = fp32_flat_groups[0].numel() * world_size
404
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
405
+ # param, re-consolidating each param, while dealing with padding if any
406
+
407
+ # merge list of dicts, preserving order
408
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
409
+
410
+ if debug:
411
+ for i in range(world_size):
412
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
413
+
414
+ wanted_params = len(param_shapes)
415
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
416
+ # not asserting if there is a mismatch due to possible padding
417
+ avail_numel = fp32_flat_groups[0].numel() * world_size
418
+ print(f"Trainable params: Have {avail_numel} numels to process.")
419
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
420
+
421
+ # params
422
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
423
+ # out-of-core computing solution
424
+ offset = 0
425
+ total_numel = 0
426
+ total_params = 0
427
+ for name, shape in tqdm(param_shapes.items(), desc='Gathering Sharded Weights'):
428
+ unpartitioned_numel = shape.numel()
429
+ total_numel += unpartitioned_numel
430
+ total_params += 1
431
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
432
+
433
+ if debug:
434
+ print(
435
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
436
+ )
437
+
438
+ # XXX: memory usage doubles here
439
+ state_dict[name] = torch.cat(
440
+ tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
441
+ 0).narrow(0, 0, unpartitioned_numel).view(shape)
442
+ offset += partitioned_numel
443
+
444
+ offset *= world_size
445
+
446
+ # Sanity check
447
+ if offset != avail_numel:
448
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
449
+
450
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
451
+
452
+
453
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
454
+ exclude_frozen_parameters):
455
+ state_dict = OrderedDict()
456
+
457
+ # buffers
458
+ buffers = zero_model_states[0].buffers
459
+ state_dict.update(buffers)
460
+ if debug:
461
+ print(f"added {len(buffers)} buffers")
462
+
463
+ if not exclude_frozen_parameters:
464
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
465
+
466
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
467
+
468
+ # recover shared parameters
469
+ for pair in zero_model_states[0].shared_params:
470
+ if pair[1] in state_dict:
471
+ state_dict[pair[0]] = state_dict[pair[1]]
472
+
473
+ return state_dict
474
+
475
+
476
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
477
+ """
478
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
479
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
480
+ via a model hub.
481
+
482
+ Args:
483
+ - ``checkpoint_dir``: path to the desired checkpoint folder
484
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
485
+ - ``exclude_frozen_parameters``: exclude frozen parameters
486
+
487
+ Returns:
488
+ - pytorch ``state_dict``
489
+
490
+ Note: this approach may not work if your application doesn't have sufficient free CPU memory and
491
+ you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
492
+ the checkpoint.
493
+
494
+ A typical usage might be ::
495
+
496
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
497
+ # do the training and checkpoint saving
498
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
499
+ model = model.cpu() # move to cpu
500
+ model.load_state_dict(state_dict)
501
+ # submit to model hub or save the model to share with others
502
+
503
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
504
+ application. i.e. you will need to re-initialize the deepspeed engine, since
505
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
506
+
507
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
508
+
509
+ """
510
+ if tag is None:
511
+ latest_path = os.path.join(checkpoint_dir, 'latest')
512
+ if os.path.isfile(latest_path):
513
+ with open(latest_path, 'r') as fd:
514
+ tag = fd.read().strip()
515
+ else:
516
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
517
+
518
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
519
+
520
+ if not os.path.isdir(ds_checkpoint_dir):
521
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
522
+
523
+ return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
524
+
525
+
526
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
527
+ output_dir,
528
+ max_shard_size="5GB",
529
+ safe_serialization=False,
530
+ tag=None,
531
+ exclude_frozen_parameters=False):
532
+ """
533
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
534
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
535
+
536
+ Args:
537
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
538
+ - ``output_dir``: directory to the pytorch fp32 state_dict output files
539
+ - ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
540
+ - ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
541
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
542
+ - ``exclude_frozen_parameters``: exclude frozen parameters
543
+ """
544
+ # Dependency pre-check
545
+ if safe_serialization:
546
+ try:
547
+ from safetensors.torch import save_file
548
+ except ImportError:
549
+ print('If you want to use `safe_serialization`, please `pip install safetensors`')
550
+ raise
551
+ if max_shard_size is not None:
552
+ try:
553
+ from huggingface_hub import split_torch_state_dict_into_shards
554
+ except ImportError:
555
+ print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
556
+ raise
557
+
558
+ # Convert zero checkpoint to state_dict
559
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
560
+
561
+ # Shard the model if it is too big.
562
+ weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
563
+ if max_shard_size is not None:
564
+ filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
565
+ state_dict_split = split_torch_state_dict_into_shards(state_dict,
566
+ filename_pattern=filename_pattern,
567
+ max_shard_size=max_shard_size)
568
+ else:
569
+ from collections import namedtuple
570
+ StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
571
+ state_dict_split = StateDictSplit(is_sharded=False,
572
+ filename_to_tensors={weights_name: list(state_dict.keys())})
573
+
574
+ # Save the model
575
+ filename_to_tensors = state_dict_split.filename_to_tensors.items()
576
+ for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
577
+ shard = {tensor: state_dict[tensor].contiguous() for tensor in tensors}
578
+ output_path = os.path.join(output_dir, shard_file)
579
+ if safe_serialization:
580
+ save_file(shard, output_path, metadata={"format": "pt"})
581
+ else:
582
+ torch.save(shard, output_path)
583
+
584
+ # Save index if sharded
585
+ if state_dict_split.is_sharded:
586
+ index = {
587
+ "metadata": state_dict_split.metadata,
588
+ "weight_map": state_dict_split.tensor_to_filename,
589
+ }
590
+ save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
591
+ save_index_file = os.path.join(output_dir, save_index_file)
592
+ with open(save_index_file, "w", encoding="utf-8") as f:
593
+ content = json.dumps(index, indent=2, sort_keys=True) + "\n"
594
+ f.write(content)
595
+
596
+
597
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
598
+ """
599
+ 1. Put the provided model to cpu
600
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
601
+ 3. Load it into the provided model
602
+
603
+ Args:
604
+ - ``model``: the model object to update
605
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
606
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
607
+
608
+ Returns:
609
+ - ``model`: modified model
610
+
611
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
612
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
613
+ conveniently placed for you in the checkpoint folder.
614
+
615
+ A typical usage might be ::
616
+
617
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
618
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
619
+ # submit to model hub or save the model to share with others
620
+
621
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
622
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
623
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
624
+
625
+ """
626
+ logger.info(f"Extracting fp32 weights")
627
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
628
+
629
+ logger.info(f"Overwriting model with fp32 weights")
630
+ model = model.cpu()
631
+ model.load_state_dict(state_dict, strict=False)
632
+
633
+ return model
634
+
635
+
636
+ if __name__ == "__main__":
637
+ parser = argparse.ArgumentParser()
638
+ parser.add_argument("checkpoint_dir",
639
+ type=str,
640
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
641
+ parser.add_argument("output_dir",
642
+ type=str,
643
+ help="directory to the pytorch fp32 state_dict output files"
644
+ "(e.g. path/checkpoint-12-output/)")
645
+ parser.add_argument(
646
+ "--max_shard_size",
647
+ type=str,
648
+ default="5GB",
649
+ help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
650
+ "lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
651
+ "We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
652
+ "without CPU OOM issues.")
653
+ parser.add_argument(
654
+ "--safe_serialization",
655
+ default=False,
656
+ action='store_true',
657
+ help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
658
+ parser.add_argument("-t",
659
+ "--tag",
660
+ type=str,
661
+ default=None,
662
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
663
+ parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
664
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
665
+ args = parser.parse_args()
666
+
667
+ debug = args.debug
668
+
669
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
670
+ args.output_dir,
671
+ max_shard_size=args.max_shard_size,
672
+ safe_serialization=args.safe_serialization,
673
+ tag=args.tag,
674
+ exclude_frozen_parameters=args.exclude_frozen_parameters)