--- license: apache-2.0 language: - en pipeline_tag: text-generation library_name: transformers base_model: DoeyLLM/OneLLM-Doey-V1-Llama-3.2-1B-it tags: - llama-cpp - gguf-my-repo --- # DoeyLLM/OneLLM-Doey-V1-Llama-3.2-1B-it-Q8_0-GGUF This model was converted to GGUF format from [`DoeyLLM/OneLLM-Doey-V1-Llama-3.2-1B-it`](https://huggingface.co/DoeyLLM/OneLLM-Doey-V1-Llama-3.2-1B-it) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/DoeyLLM/OneLLM-Doey-V1-Llama-3.2-1B-it) for more details on the model. ### **Quick Start for iOS/Android** Follow these steps to integrate the **DoeyLLM** model using the OneLLM app: 1. **Download OneLLM** iOS: Get the app from the [App Store](https://apps.apple.com/us/app/llm-all-in-one-onellm-pro/id6740195165) and install it on your iOS device. Android: Get the app from the [Play Store](https://play.google.com/store/apps/details?id=com.esotech.onellmpro&hl=en_US) and install it on your Android device. 3. **Load the DoeyLLM Model** Use the OneLLM interface to load the DoeyLLM model directly into the app: - Navigate to the **Model Library**. - Search for `DoeyLLM`. - Select the model and tap **Download** to store it locally on your device. 4. **Start Conversing** Once the model is loaded, you can begin interacting with it through the app's chat interface. For example: - Tap the **Chat** tab. - Type your question or prompt, such as: > "Explain the significance of AI in education." - Receive real-time, intelligent responses generated locally. ### **Key Features of OneLLM** - **Versatile Models**: Supports various LLMs, including Llama, Gemma, and Qwen. - **Private & Secure**: All processing occurs locally on your device, ensuring data privacy. - **Offline Capability**: Use the app without requiring an internet connection. - **Fast Performance**: Optimized for mobile devices, delivering low-latency responses. For more details or support, visit the [OneLLM App Store page](https://apps.apple.com/us/app/onellm-private-ai-gpt-llm/id6737907910). ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo DoeyLLM/OneLLM-Doey-V1-Llama-3.2-1B-it-Q8_0-GGUF --hf-file onellm-doey-v1-llama-3.2-1b-it-q8_0.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo DoeyLLM/OneLLM-Doey-V1-Llama-3.2-1B-it-Q8_0-GGUF --hf-file onellm-doey-v1-llama-3.2-1b-it-q8_0.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo DoeyLLM/OneLLM-Doey-V1-Llama-3.2-1B-it-Q8_0-GGUF --hf-file onellm-doey-v1-llama-3.2-1b-it-q8_0.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo DoeyLLM/OneLLM-Doey-V1-Llama-3.2-1B-it-Q8_0-GGUF --hf-file onellm-doey-v1-llama-3.2-1b-it-q8_0.gguf -c 2048 ```