--- base_model: klue/roberta-base tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: roberta-base-finetuned-tc results: [] --- # roberta-base-finetuned-tc This model is a fine-tuned version of [klue/roberta-base](https://huggingface.co/klue/roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5510 - Accuracy: 0.8442 - F1: 0.8376 - Precision: 0.8466 - Recall: 0.8442 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 10 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | No log | 1.0 | 15 | 1.3600 | 0.5055 | 0.3395 | 0.2556 | 0.5055 | | No log | 2.0 | 30 | 0.9601 | 0.6712 | 0.5846 | 0.6041 | 0.6712 | | No log | 3.0 | 45 | 0.7381 | 0.7865 | 0.7621 | 0.7439 | 0.7865 | | No log | 4.0 | 60 | 0.6402 | 0.8172 | 0.7964 | 0.7793 | 0.8172 | | No log | 5.0 | 75 | 0.5886 | 0.8258 | 0.8074 | 0.8163 | 0.8258 | | No log | 6.0 | 90 | 0.5714 | 0.8344 | 0.8213 | 0.8280 | 0.8344 | | No log | 7.0 | 105 | 0.5618 | 0.8331 | 0.8233 | 0.8386 | 0.8331 | | No log | 8.0 | 120 | 0.5559 | 0.8380 | 0.8307 | 0.8428 | 0.8380 | | No log | 9.0 | 135 | 0.5510 | 0.8442 | 0.8376 | 0.8466 | 0.8442 | | No log | 10.0 | 150 | 0.5545 | 0.8429 | 0.8355 | 0.8454 | 0.8429 | ### Framework versions - Transformers 4.38.2 - Pytorch 2.1.0+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2