--- base_model: klue/roberta-base tags: - generated_from_trainer metrics: - f1 model-index: - name: roberta-base-finetuned-ynat results: [] --- # roberta-base-finetuned-ynat This model is a fine-tuned version of [klue/roberta-base](https://huggingface.co/klue/roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3938 - F1: 0.8672 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 512 - eval_batch_size: 512 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 200 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.3162 | 0.56 | 50 | 0.4069 | 0.8610 | | 0.276 | 1.11 | 100 | 0.4176 | 0.8587 | | 0.2706 | 1.67 | 150 | 0.4036 | 0.8631 | | 0.2941 | 2.22 | 200 | 0.4232 | 0.8590 | | 0.2778 | 2.78 | 250 | 0.3994 | 0.8623 | | 0.2575 | 3.33 | 300 | 0.3979 | 0.8628 | | 0.2389 | 3.89 | 350 | 0.4008 | 0.8652 | | 0.2258 | 4.44 | 400 | 0.3950 | 0.8653 | | 0.2097 | 5.0 | 450 | 0.3938 | 0.8672 | ### Framework versions - Transformers 4.37.0 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0