File size: 4,627 Bytes
fa95c37 4ede24d 17807f9 4ede24d fa95c37 56bbbe8 fa95c37 4ede24d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 |
---
language:
- ko
license: cc-by-nc-sa-4.0
library_name: transformers
tags:
- merge
pipeline_tag: text-generation
model-index:
- name: SOLARC-M-10.7B
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 71.16
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=DopeorNope/SOLARC-M-10.7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 88.41
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=DopeorNope/SOLARC-M-10.7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 66.31
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=DopeorNope/SOLARC-M-10.7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 71.85
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=DopeorNope/SOLARC-M-10.7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 83.35
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=DopeorNope/SOLARC-M-10.7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 65.43
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=DopeorNope/SOLARC-M-10.7B
name: Open LLM Leaderboard
---
**The license is `cc-by-nc-sa-4.0`.**
# **🐻❄️SOLARC-M-10.7B🐻❄️**
![img](https://drive.google.com/uc?export=view&id=1_Qa2TfLMw3WeJ23dHkrP1Xln_RNt1jqG)
## Model Details
**Model Developers** Seungyoo Lee(DopeorNope)
I am in charge of Large Language Models (LLMs) at Markr AI team in South Korea.
**Input** Models input text only.
**Output** Models generate text only.
**Model Architecture**
SOLARC-M-10.7B is an auto-regressive language model based on the SOLAR architecture.
---
## **Base Model**
[kyujinpy/Sakura-SOLAR-Instruct](https://huggingface.co/kyujinpy/Sakura-SOLAR-Instruct)
[jeonsworld/CarbonVillain-en-10.7B-v1](https://huggingface.co/jeonsworld/CarbonVillain-en-10.7B-v1)
## **Implemented Method**
I have built a model using the merge method, utilizing each of these models as the base.
---
# Implementation Code
## Load model
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
repo = "DopeorNope/SOLARC-M-10.7B"
OpenOrca = AutoModelForCausalLM.from_pretrained(
repo,
return_dict=True,
torch_dtype=torch.float16,
device_map='auto'
)
OpenOrca_tokenizer = AutoTokenizer.from_pretrained(repo)
```
---
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_DopeorNope__SOLARC-M-10.7B)
| Metric |Value|
|---------------------------------|----:|
|Avg. |74.42|
|AI2 Reasoning Challenge (25-Shot)|71.16|
|HellaSwag (10-Shot) |88.41|
|MMLU (5-Shot) |66.31|
|TruthfulQA (0-shot) |71.85|
|Winogrande (5-shot) |83.35|
|GSM8k (5-shot) |65.43|
|