--- language: - ko library_name: transformers pipeline_tag: text-generation license: cc-by-nc-sa-4.0 --- **The license is `cc-by-nc-sa-4.0`.** # **🐻‍❄️SOLARC-M-10.7B🐻‍❄️** ![img](https://drive.google.com/uc?export=view&id=1_Qa2TfLMw3WeJ23dHkrP1Xln_RNt1jqG) ## Model Details **Model Developers** Seungyoo Lee(DopeorNope) I am in charge of Large Language Models (LLMs) at Markr AI team in South Korea. **Input** Models input text only. **Output** Models generate text only. **Model Architecture** SOLARC-MOE-10.7Bx6 is an auto-regressive language model based on the SOLAR architecture. --- ## **Base Model** [kyujinpy/Sakura-SOLAR-Instruct](https://huggingface.co/kyujinpy/Sakura-SOLAR-Instruct) [jeonsworld/CarbonVillain-en-10.7B-v1](https://huggingface.co/jeonsworld/CarbonVillain-en-10.7B-v1) ## **Implemented Method** I have built a model using the merge method, utilizing each of these models as the base. --- # Implementation Code ## Load model ```python from transformers import AutoModelForCausalLM, AutoTokenizer import torch repo = "DopeorNope/SOLARC-M-10.7B" OpenOrca = AutoModelForCausalLM.from_pretrained( repo, return_dict=True, torch_dtype=torch.float16, device_map='auto' ) OpenOrca_tokenizer = AutoTokenizer.from_pretrained(repo) ``` ---