{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7a1ad751ee00>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1726575129836764990, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAKbjjL0gOd4+lKYmPjsppb7emEW9YkHLPQAAAAAAAAAAABKjvHZltz9P2Du+dcW9vKp85LygB9u9AAAAAAAAAADNdg8+tF+CPoXrNL6pbJS+wC9XPSq2Kj0AAAAAAAAAAIBFND32mF05Nkq5OmvxyTXB57G71bPduQAAgD8AAAAAzX8UPc/RgD9zZwY+mWENv7cMjLrL/8w9AAAAAAAAAADm3cA+AELOPh+oJ70Sfry+X2dtPgrtRL0AAAAAAAAAABrkOb4Iua8+Yp3OPn6g2r4azOA91Xa+PQAAAAAAAAAAJnJTPkZZoz4BcBa93Y7evqqM4j2CKAi+AAAAAAAAAABzmkg+rir1vMw4SjmbIQO+92kfvp6lnj4AAIA/AACAPwDdYD4fvIE8Z1KUuiRHl7hLUAs+gq6WuQAAgD8AAIA/jT+aPa5fk7qgssM4gk5cNMxR6roS1uG3AACAPwAAgD8AzUc9pHBXOFKsfzVV3xAvUd0huyanwbQAAIA/AACAPybxzz30DNw9Kki2O++1nL5O3dA8ApEPPQAAAAAAAAAATSw3vgepnz8ezrm+KMoFv0Smlb5CNRW+AAAAAAAAAABTamk+KjoCvVYjGTzO+J66KPpvvpUxcLsAAIA/AACAP5r5Krrq00Y+8/RrPkRKp75WUyE+2vPeOwAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVBwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHAfNix3V0+MAWyUS/CMAXSUR0CQrc6wdKdydX2UKGgGR0Bxe5bGFSKnaAdL42gIR0CQrreTmnwYdX2UKGgGR0BxCENpdrwfaAdL9WgIR0CQsOeUILPVdX2UKGgGR0BxRvrPdEb6aAdL62gIR0CQsV2WIGhVdX2UKGgGR0BxLucqe9SNaAdNBQFoCEdAkLGG/i5uqHV9lChoBkdAb9E0hNdqtmgHTQsBaAhHQJCxvlcQiA51fZQoaAZHQHLsqs2eg+RoB01tAWgIR0CQsfd+5OJtdX2UKGgGR0BxO/961LJ0aAdL/mgIR0CQsig3974SdX2UKGgGR0Byjw3tKIznaAdNMgFoCEdAkLMWi5/b03V9lChoBkdAcdNNrj5sTGgHS+JoCEdAkLOj/yXlbXV9lChoBkdAcJbfXf642GgHS+1oCEdAkLQxmbsniXV9lChoBkdAYRyWi1y/9GgHTegDaAhHQJC0VlFtsN51fZQoaAZHQHKqKab4Ju5oB01PAmgIR0CQtaVbRne0dX2UKGgGR0BwGFE3Kji5aAdL6mgIR0CQtb6tT1kEdX2UKGgGR0BtYu/tY0VKaAdNKgFoCEdAkLZM8gZCOXV9lChoBkdAcVcXKr7wa2gHTSIBaAhHQJC2cQSSNfh1fZQoaAZHQHGWq2OQyRBoB0vRaAhHQJC4TLGJemh1fZQoaAZHQG49QVsUIs1oB0vraAhHQJC48ZsKsuF1fZQoaAZHQG6yj1wo9cNoB0vFaAhHQJC6jS9du511fZQoaAZHQG9Onp0OmSBoB0vwaAhHQJC6lvQ4S6F1fZQoaAZHQHHrVOO801toB0vxaAhHQJC7Tb5/LDB1fZQoaAZHQHEfE6Lfk3loB01jAWgIR0CQvPFzMibEdX2UKGgGR0Bvq6Df3vhIaAdL8mgIR0CQve+xW1c/dX2UKGgGR0BxjanNxEORaAdNNwFoCEdAkL6j1bqyGHV9lChoBkdAcdfVYp2ECmgHTZ0BaAhHQJC+ySDAaeh1fZQoaAZHQG5EDn3cpLFoB00EAWgIR0CQv1sNlRP5dX2UKGgGR0BwNGPGQ0XQaAdNDQFoCEdAkL/XAZbY9XV9lChoBkdAc5l+3H7xeGgHS9JoCEdAkL/zjBEa2nV9lChoBkdASbuu5jH4oWgHTegDaAhHQJDASgbp/w11fZQoaAZHQEq+lQdjoZBoB0uwaAhHQJDAzx2B8QZ1fZQoaAZHQHF8qZQYUFloB01VAWgIR0CQwRUzsQd0dX2UKGgGR0By69CPZIxyaAdL22gIR0CQwfhQWN3odX2UKGgGR0BzIK3DvVmSaAdL6GgIR0CQwuTRYzSDdX2UKGgGR0BxHezfJmulaAdL6GgIR0CQxDxjriVCdX2UKGgGR0Bw4YU/OdGzaAdLw2gIR0CQxH/oaDPGdX2UKGgGR0BJgOBlMAWBaAdLqGgIR0CQxJXF98Z2dX2UKGgGR0BuBeUbDMvAaAdL5GgIR0CQxNIDoyKvdX2UKGgGR0Bhn3KGL1mKaAdN6ANoCEdAkMVXnMdLhHV9lChoBkdAcJvLUCq6v2gHS71oCEdAkMWc189fTnV9lChoBkdAcKDA9V3ljmgHS+1oCEdAkMWmBas6rHV9lChoBkdAYJ5ItlI3BGgHTZQCaAhHQJDFq2gFotd1fZQoaAZHQHEHmbwz+FVoB0vtaAhHQJDGmFnIyTJ1fZQoaAZHQHLLQntv4udoB0v5aAhHQJDbESOBDoh1fZQoaAZHQHELWMsH0K9oB00OAWgIR0CQ3H8yvcJudX2UKGgGR0BzLVKtga3raAdNWwFoCEdAkN1e54GD+XV9lChoBkdAPh6j8DSw4mgHS6RoCEdAkN7RQzk6tHV9lChoBkdAcFNc580DU2gHS9xoCEdAkN8/b48EFHV9lChoBkdAcNcsNlRP42gHS91oCEdAkN+zCxeLN3V9lChoBkdAcy2vwmVqvmgHTUQBaAhHQJDgetFKCg91fZQoaAZHQHBlj2Bas6toB00pAWgIR0CQ4L7hegL7dX2UKGgGR0Byovr1M/QjaAdNBAFoCEdAkOGX7+DODHV9lChoBkdAcVGUbT+efGgHS/poCEdAkOIkH6dlNHV9lChoBkdAckvREnb7CWgHS9JoCEdAkONbWmP5pXV9lChoBkdAbs+zbeuV5mgHTUkBaAhHQJDjgjRlYlp1fZQoaAZHQDsZzOoo/iZoB0uhaAhHQJDkbEm6XjV1fZQoaAZHQHD0qg2606ZoB00lAWgIR0CQ5JwD/2kBdX2UKGgGR0Bw3SkP+XJHaAdNZgFoCEdAkOUq7yxzJnV9lChoBkdAcJxm5DqnnGgHS/ZoCEdAkOVpY9xIa3V9lChoBkdAY1rkCFK02WgHTegDaAhHQJDlePbO/tZ1fZQoaAZHQHDJJI6Kcd5oB0vwaAhHQJDnCjKxLTR1fZQoaAZHQHBxZ4Oc2BJoB00pAWgIR0CQ527hNucddX2UKGgGR0BxdkUpNKywaAdL/GgIR0CQ56Qla8pTdX2UKGgGR0ByT2QFLWZraAdL92gIR0CQ6BYU34sVdX2UKGgGR0BwsiTUy57PaAdL5GgIR0CQ6FOqNp/PdX2UKGgGR0ByTA3974SIaAdNCAFoCEdAkOhdi2DxsnV9lChoBkdAb1LjgAIY32gHTQMBaAhHQJDpsAuIyj51fZQoaAZHQHOZsRg7YChoB0viaAhHQJDp1azNUwV1fZQoaAZHQE20dRR/EwZoB0uhaAhHQJDp5+fAbhp1fZQoaAZHQHABIcWCVbBoB0vuaAhHQJDqSmj0tiB1fZQoaAZHQHJ0MlC1JDpoB0vjaAhHQJDrAhcJMQF1fZQoaAZHQHIMKKP4mC1oB0vPaAhHQJDrQglnh891fZQoaAZHQHGI66BiCrdoB0v0aAhHQJDsBUrCm/F1fZQoaAZHQG1R/1QIldFoB00SAWgIR0CQ7C/xUedTdX2UKGgGR0BakGY4Qz1saAdN6ANoCEdAkOx3xz7uUnV9lChoBkdAcibgQYk3TGgHS/NoCEdAkO4RsZYPoXV9lChoBkdAb2G5OJtSAGgHS+xoCEdAkO4ZiuuA7XV9lChoBkdAcpNiMYMvy2gHS/xoCEdAkO8Jf+jubHV9lChoBkdAcwoyFfzBh2gHS/NoCEdAkO8XEl3QlnV9lChoBkdAcdWGpda+vmgHTQoBaAhHQJDvwADJU5x1fZQoaAZHQHAIosRQJoloB0vfaAhHQJDv7btZ3cJ1fZQoaAZHQG7Z2ac7QsxoB0vnaAhHQJDwT3j+7191fZQoaAZHQHHIh2St/4JoB0vCaAhHQJDwc61b7j11fZQoaAZHQHGW13ljmS1oB0vxaAhHQJDwrS0BwMp1fZQoaAZHQHCqTnA6+39oB00gAWgIR0CQ8ngRbr1NdX2UKGgGR0BwrLSsr/bTaAdL6WgIR0CQ8tA/cFhYdX2UKGgGR0ByXuU4aP0aaAdL0GgIR0CQ9F73wkPddX2UKGgGR0ByFGe05U97aAdNFQFoCEdAkPSe5rgwXnV9lChoBkdARozRrrPdEmgHS59oCEdAkPTQ3cYZVHV9lChoBkdAcLWs9SuQqGgHS+ZoCEdAkPUYrjHXE3V9lChoBkdAcW3p2ll9SmgHS9FoCEdAkPZXtv4ub3V9lChoBkdAT+lMK1G9YmgHS7ZoCEdAkPaFI3BHkXV9lChoBkdAcscFj/dZaGgHTRsCaAhHQJD26PMjeKt1fZQoaAZHQHCVjpgTh5xoB00HAWgIR0CQ93dDYywfdX2UKGgGR0BxnpKoQ4CIaAdNCQFoCEdAkPd9M495hXV9lChoBkdAVcNv5xiobWgHTegDaAhHQJD4Z2GIsRR1fZQoaAZHQHH/68tf5UNoB00CAWgIR0CQ+IF7laKUdX2UKGgGR0BzN1Pj4pMIaAdL/2gIR0CQ+I0rbxmTdX2UKGgGR0BuSKzJIUaiaAdL5mgIR0CQ+Z5byH2zdX2UKGgGR0Bu0QDifg76aAdL5GgIR0CQ+dtHxz7udX2UKGgGR0BvLEZtNzsAaAdLx2gIR0CQ+oLi++M7dWUu"}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.4.0+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}