--- license: mit language: - en - zh tags: - mteb - llama-cpp - gguf-my-repo pipeline_tag: feature-extraction base_model: BAAI/bge-reranker-large model-index: - name: bge-reranker-base results: - task: type: Reranking dataset: name: MTEB CMedQAv1 type: C-MTEB/CMedQAv1-reranking config: default split: test revision: None metrics: - type: map value: 81.27206722525007 - type: mrr value: 84.14238095238095 - task: type: Reranking dataset: name: MTEB CMedQAv2 type: C-MTEB/CMedQAv2-reranking config: default split: test revision: None metrics: - type: map value: 84.10369934291236 - type: mrr value: 86.79376984126984 - task: type: Reranking dataset: name: MTEB MMarcoReranking type: C-MTEB/Mmarco-reranking config: default split: dev revision: None metrics: - type: map value: 35.4600511272538 - type: mrr value: 34.60238095238095 - task: type: Reranking dataset: name: MTEB T2Reranking type: C-MTEB/T2Reranking config: default split: dev revision: None metrics: - type: map value: 67.27728847727172 - type: mrr value: 77.1315192743764 --- # DrRos/bge-reranker-large-Q4_K_M-GGUF This model was converted to GGUF format from [`BAAI/bge-reranker-large`](https://huggingface.co/BAAI/bge-reranker-large) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/BAAI/bge-reranker-large) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo DrRos/bge-reranker-large-Q4_K_M-GGUF --hf-file bge-reranker-large-q4_k_m.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo DrRos/bge-reranker-large-Q4_K_M-GGUF --hf-file bge-reranker-large-q4_k_m.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo DrRos/bge-reranker-large-Q4_K_M-GGUF --hf-file bge-reranker-large-q4_k_m.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo DrRos/bge-reranker-large-Q4_K_M-GGUF --hf-file bge-reranker-large-q4_k_m.gguf -c 2048 ```