--- language: - kk license: apache-2.0 base_model: openai/whisper-large-v3 tags: - hf-asr-leaderboard - generated_from_trainer datasets: - mozilla-foundation/common_voice_17_0 metrics: - wer model-index: - name: Whisper Large v3 Kazakh results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 17.0 type: mozilla-foundation/common_voice_17_0 config: kk split: test args: 'config: kk, split: test' metrics: - name: Wer type: wer value: 188.06064434617815 --- # Whisper Large v3 Kazakh This model is a fine-tuned version of [openai/whisper-large-v3](https://huggingface.co/openai/whisper-large-v3) on the Common Voice 17.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.5842 - Wer: 188.0606 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:--------:|:----:|:---------------:|:--------:| | 0.0003 | 28.5714 | 1000 | 0.4718 | 546.6835 | | 0.0 | 57.1429 | 2000 | 0.5506 | 175.4264 | | 0.0 | 85.7143 | 3000 | 0.5751 | 185.3759 | | 0.0 | 114.2857 | 4000 | 0.5842 | 188.0606 | ### Framework versions - Transformers 4.42.0.dev0 - Pytorch 1.12.0 - Datasets 2.20.0 - Tokenizers 0.19.1