File size: 2,617 Bytes
11e38d8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
---
license: apache-2.0
base_model: facebook/hubert-base-ls960
tags:
- generated_from_trainer
datasets:
- marsyas/gtzan
metrics:
- accuracy
model-index:
- name: hubert-base-ls960-finetuned-gtzan-bs-8
  results:
  - task:
      name: Audio Classification
      type: audio-classification
    dataset:
      name: GTZAN
      type: marsyas/gtzan
      config: default
      split: train
      args: default
    metrics:
    - name: Accuracy
      type: accuracy
      value: 1.0
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# hubert-base-ls960-finetuned-gtzan-bs-8

This model is a fine-tuned version of [facebook/hubert-base-ls960](https://huggingface.co/facebook/hubert-base-ls960) on the GTZAN dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0222
- Accuracy: 1.0

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 15

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 1.997         | 1.0   | 30   | 1.7902          | 0.8148   |
| 1.4902        | 2.0   | 60   | 1.3832          | 0.4074   |
| 1.2254        | 3.0   | 90   | 0.9829          | 1.0      |
| 0.8641        | 4.0   | 120  | 0.5986          | 1.0      |
| 0.4658        | 5.0   | 150  | 0.3381          | 0.9630   |
| 0.4094        | 6.0   | 180  | 0.5581          | 0.8519   |
| 0.2778        | 7.0   | 210  | 0.3275          | 0.9259   |
| 0.2474        | 8.0   | 240  | 0.0614          | 1.0      |
| 0.282         | 9.0   | 270  | 0.0402          | 1.0      |
| 0.0942        | 10.0  | 300  | 0.2155          | 0.9630   |
| 0.0704        | 11.0  | 330  | 0.1869          | 0.9630   |
| 0.0952        | 12.0  | 360  | 0.2176          | 0.9630   |
| 0.1569        | 13.0  | 390  | 0.1957          | 0.9630   |
| 0.1165        | 14.0  | 420  | 0.0165          | 1.0      |
| 0.0224        | 15.0  | 450  | 0.0222          | 1.0      |


### Framework versions

- Transformers 4.32.0.dev0
- Pytorch 2.0.1+cu118
- Datasets 2.14.3
- Tokenizers 0.13.3