--- license: apache-2.0 base_model: facebook/hubert-base-ls960 tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: hubert-base-ls960-finetuned-gtzan-bs-8 results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 1.0 --- # hubert-base-ls960-finetuned-gtzan-bs-8 This model is a fine-tuned version of [facebook/hubert-base-ls960](https://huggingface.co/facebook/hubert-base-ls960) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.0222 - Accuracy: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.997 | 1.0 | 30 | 1.7902 | 0.8148 | | 1.4902 | 2.0 | 60 | 1.3832 | 0.4074 | | 1.2254 | 3.0 | 90 | 0.9829 | 1.0 | | 0.8641 | 4.0 | 120 | 0.5986 | 1.0 | | 0.4658 | 5.0 | 150 | 0.3381 | 0.9630 | | 0.4094 | 6.0 | 180 | 0.5581 | 0.8519 | | 0.2778 | 7.0 | 210 | 0.3275 | 0.9259 | | 0.2474 | 8.0 | 240 | 0.0614 | 1.0 | | 0.282 | 9.0 | 270 | 0.0402 | 1.0 | | 0.0942 | 10.0 | 300 | 0.2155 | 0.9630 | | 0.0704 | 11.0 | 330 | 0.1869 | 0.9630 | | 0.0952 | 12.0 | 360 | 0.2176 | 0.9630 | | 0.1569 | 13.0 | 390 | 0.1957 | 0.9630 | | 0.1165 | 14.0 | 420 | 0.0165 | 1.0 | | 0.0224 | 15.0 | 450 | 0.0222 | 1.0 | ### Framework versions - Transformers 4.32.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.14.3 - Tokenizers 0.13.3