File size: 5,597 Bytes
f5a8d84
18dc4bb
 
f5a8d84
 
18dc4bb
 
f5a8d84
18dc4bb
 
 
e9b231b
f5a8d84
d255bf0
f5a8d84
ed4d04c
18dc4bb
e9b231b
 
18dc4bb
 
 
 
 
 
e9b231b
 
 
 
 
 
 
80dd25e
 
 
 
 
 
 
e9b231b
 
 
 
 
 
f5a8d84
 
 
 
 
e894fd0
f5a8d84
0608791
f5a8d84
 
 
 
80dd25e
 
f5a8d84
80dd25e
f5a8d84
80dd25e
f5a8d84
80dd25e
f5a8d84
50f38f9
 
 
 
 
f5a8d84
 
ed4d04c
f5a8d84
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
---
language:
- hi
license: apache-2.0
tags:
- automatic-speech-recognition
- mozilla-foundation/common_voice_8_0
- generated_from_trainer
- hi
- robust-speech-event
- model_for_talk
- hf-asr-leaderboard
datasets:
- mozilla-foundation/common_voice_8_0
model-index:
- name: wav2vec2-large-xls-r-300m-hi-cv8
  results:
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: Common Voice 8
      type: mozilla-foundation/common_voice_8_0
      args: hi
    metrics:
    - name: Test WER
      type: wer
      value: 0.3628727037755008
    - name: Test CER
      type: cer
      value: 0.11933724247521164
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: Robust Speech Event - Dev Data
      type: speech-recognition-community-v2/dev_data
      args: hi
    metrics:
    - name: Test WER
      type: wer
      value: NA
    - name: Test CER
      type: cer
      value: NA
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# wav2vec2-large-xls-r-300m-hi-cv8

This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - HI  dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6510
- Wer: 0.3179

### Evaluation Commands
1. To evaluate on mozilla-foundation/common_voice_8_0 with test split

python eval.py --model_id DrishtiSharma/wav2vec2-large-xls-r-300m-hi-cv8 --dataset mozilla-foundation/common_voice_8_0 --config hi --split test --log_outputs

2. To evaluate on speech-recognition-community-v2/dev_data

python eval.py --model_id DrishtiSharma/wav2vec2-large-xls-r-300m-hi-cv8 --dataset speech-recognition-community-v2/dev_data --config hi --split validation --chunk_length_s 10 --stride_length_s 1

Note: Hindi language not found in speech-recognition-community-v2/dev_data



### Training hyperparameters

The following hyperparameters were used during training:

- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 2000
- num_epochs: 50
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Wer    |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 12.5576       | 1.04  | 200  | 6.6594          | 1.0    |
| 4.4069        | 2.07  | 400  | 3.6011          | 1.0    |
| 3.4273        | 3.11  | 600  | 3.3370          | 1.0    |
| 2.1108        | 4.15  | 800  | 1.0641          | 0.6562 |
| 0.8817        | 5.18  | 1000 | 0.7178          | 0.5172 |
| 0.6508        | 6.22  | 1200 | 0.6612          | 0.4839 |
| 0.5524        | 7.25  | 1400 | 0.6458          | 0.4889 |
| 0.4992        | 8.29  | 1600 | 0.5791          | 0.4382 |
| 0.4669        | 9.33  | 1800 | 0.6039          | 0.4352 |
| 0.4441        | 10.36 | 2000 | 0.6276          | 0.4297 |
| 0.4172        | 11.4  | 2200 | 0.6183          | 0.4474 |
| 0.3872        | 12.44 | 2400 | 0.5886          | 0.4231 |
| 0.3692        | 13.47 | 2600 | 0.6448          | 0.4399 |
| 0.3385        | 14.51 | 2800 | 0.6344          | 0.4075 |
| 0.3246        | 15.54 | 3000 | 0.5896          | 0.4087 |
| 0.3026        | 16.58 | 3200 | 0.6158          | 0.4016 |
| 0.284         | 17.62 | 3400 | 0.6038          | 0.3906 |
| 0.2682        | 18.65 | 3600 | 0.6165          | 0.3900 |
| 0.2577        | 19.69 | 3800 | 0.5754          | 0.3805 |
| 0.2509        | 20.73 | 4000 | 0.6028          | 0.3925 |
| 0.2426        | 21.76 | 4200 | 0.6335          | 0.4138 |
| 0.2346        | 22.8  | 4400 | 0.6128          | 0.3870 |
| 0.2205        | 23.83 | 4600 | 0.6223          | 0.3831 |
| 0.2104        | 24.87 | 4800 | 0.6122          | 0.3781 |
| 0.1992        | 25.91 | 5000 | 0.6467          | 0.3792 |
| 0.1916        | 26.94 | 5200 | 0.6277          | 0.3636 |
| 0.1835        | 27.98 | 5400 | 0.6317          | 0.3773 |
| 0.1776        | 29.02 | 5600 | 0.6124          | 0.3614 |
| 0.1751        | 30.05 | 5800 | 0.6475          | 0.3628 |
| 0.1662        | 31.09 | 6000 | 0.6266          | 0.3504 |
| 0.1584        | 32.12 | 6200 | 0.6347          | 0.3532 |
| 0.1494        | 33.16 | 6400 | 0.6636          | 0.3491 |
| 0.1457        | 34.2  | 6600 | 0.6334          | 0.3507 |
| 0.1427        | 35.23 | 6800 | 0.6397          | 0.3442 |
| 0.1397        | 36.27 | 7000 | 0.6468          | 0.3496 |
| 0.1283        | 37.31 | 7200 | 0.6291          | 0.3416 |
| 0.1255        | 38.34 | 7400 | 0.6652          | 0.3461 |
| 0.1195        | 39.38 | 7600 | 0.6587          | 0.3342 |
| 0.1169        | 40.41 | 7800 | 0.6478          | 0.3319 |
| 0.1126        | 41.45 | 8000 | 0.6280          | 0.3291 |
| 0.1112        | 42.49 | 8200 | 0.6434          | 0.3290 |
| 0.1069        | 43.52 | 8400 | 0.6542          | 0.3268 |
| 0.1027        | 44.56 | 8600 | 0.6536          | 0.3239 |
| 0.0993        | 45.6  | 8800 | 0.6622          | 0.3257 |
| 0.0973        | 46.63 | 9000 | 0.6572          | 0.3192 |
| 0.0911        | 47.67 | 9200 | 0.6522          | 0.3175 |
| 0.0897        | 48.7  | 9400 | 0.6521          | 0.3200 |
| 0.0905        | 49.74 | 9600 | 0.6510          | 0.3179 |


### Framework versions

- Transformers 4.16.2
- Pytorch 1.10.0+cu111
- Datasets 1.18.3
- Tokenizers 0.11.0