File size: 4,069 Bytes
3c24238
78470f5
 
3c24238
 
78470f5
 
3c24238
78470f5
 
24ad8b9
3c24238
6d418e2
3c24238
 
78470f5
24ad8b9
 
78470f5
 
 
 
 
 
24ad8b9
 
 
 
 
 
 
2a19fe9
 
 
 
 
 
 
24ad8b9
 
 
 
 
 
3c24238
 
 
 
 
 
 
69f1d0a
3c24238
 
 
 
2a19fe9
3c24238
2a19fe9
3c24238
2a19fe9
3c24238
2a19fe9
3c24238
2a19fe9
3c24238
2a19fe9
3c24238
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7ba5a53
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
---
language:
- mr
license: apache-2.0
tags:
- automatic-speech-recognition
- mozilla-foundation/common_voice_8_0
- generated_from_trainer
- mr
- robust-speech-event
- hf-asr-leaderboard
datasets:
- mozilla-foundation/common_voice_8_0
model-index:
- name: wav2vec2-large-xls-r-300m-mr-v2
  results:
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: Common Voice 8
      type: mozilla-foundation/common_voice_8_0
      args: mr
    metrics:
    - name: Test WER
      type: wer
      value: 0.49378259125551544
    - name: Test CER
      type: cer
      value: 0.12470799640610962
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: Robust Speech Event - Dev Data
      type: speech-recognition-community-v2/dev_data
      args: mr
    metrics:
    - name: Test WER
      type: wer
      value: NA
    - name: Test CER
      type: cer
      value: NA
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# wav2vec2-large-xls-r-300m-mr-v2

This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - MR dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8729
- Wer: 0.4942

### Evaluation Commands

1. To evaluate on mozilla-foundation/common_voice_8_0 with test split

python eval.py --model_id DrishtiSharma/wav2vec2-large-xls-r-300m-mr-v2 --dataset mozilla-foundation/common_voice_8_0 --config mr --split test --log_outputs

2. To evaluate on speech-recognition-community-v2/dev_data

python eval.py --model_id DrishtiSharma/wav2vec2-large-xls-r-300m-mr-v2 --dataset speech-recognition-community-v2/dev_data --config mr --split validation --chunk_length_s 10 --stride_length_s 1

Note: Marathi language not found in speech-recognition-community-v2/dev_data!

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.000333
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 200
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Wer    |
|:-------------:|:------:|:----:|:---------------:|:------:|
| 8.4934        | 9.09   | 200  | 3.7326          | 1.0    |
| 3.4234        | 18.18  | 400  | 3.3383          | 0.9996 |
| 3.2628        | 27.27  | 600  | 2.7482          | 0.9992 |
| 1.7743        | 36.36  | 800  | 0.6755          | 0.6787 |
| 1.0346        | 45.45  | 1000 | 0.6067          | 0.6193 |
| 0.8137        | 54.55  | 1200 | 0.6228          | 0.5612 |
| 0.6637        | 63.64  | 1400 | 0.5976          | 0.5495 |
| 0.5563        | 72.73  | 1600 | 0.7009          | 0.5383 |
| 0.4844        | 81.82  | 1800 | 0.6662          | 0.5287 |
| 0.4057        | 90.91  | 2000 | 0.6911          | 0.5303 |
| 0.3582        | 100.0  | 2200 | 0.7207          | 0.5327 |
| 0.3163        | 109.09 | 2400 | 0.7107          | 0.5118 |
| 0.2761        | 118.18 | 2600 | 0.7538          | 0.5118 |
| 0.2415        | 127.27 | 2800 | 0.7850          | 0.5178 |
| 0.2127        | 136.36 | 3000 | 0.8016          | 0.5034 |
| 0.1873        | 145.45 | 3200 | 0.8302          | 0.5187 |
| 0.1723        | 154.55 | 3400 | 0.9085          | 0.5223 |
| 0.1498        | 163.64 | 3600 | 0.8396          | 0.5126 |
| 0.1425        | 172.73 | 3800 | 0.8776          | 0.5094 |
| 0.1258        | 181.82 | 4000 | 0.8651          | 0.5014 |
| 0.117         | 190.91 | 4200 | 0.8772          | 0.4970 |
| 0.1093        | 200.0  | 4400 | 0.8729          | 0.4942 |


### Framework versions

- Transformers 4.16.1
- Pytorch 1.10.0+cu111
- Datasets 1.18.2
- Tokenizers 0.11.0