File size: 4,517 Bytes
5d8500a 451f0af 5d8500a 451f0af 5d8500a 1ca06a6 451f0af 1ca06a6 5d8500a f802820 5d8500a a427013 451f0af f2f2561 451f0af eb3e8d8 25318e3 f2f2561 5da19dc f2f2561 5d8500a dd0f11f 5d8500a 324b5e9 5d8500a 324b5e9 5d8500a 324b5e9 5d8500a 324b5e9 5d8500a 324b5e9 5d8500a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 |
---
language:
- sr
license: apache-2.0
tags:
- automatic-speech-recognition
- generated_from_trainer
- hf-asr-leaderboard
- model_for_talk
- mozilla-foundation/common_voice_8_0
- robust-speech-event
- sr
datasets:
- mozilla-foundation/common_voice_8_0
model-index:
- name: wav2vec2-large-xls-r-300m-sr-v4
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice 8
type: mozilla-foundation/common_voice_8_0
args: sr
metrics:
- name: Test WER
type: wer
value: 0.303313
- name: Test CER
type: cer
value: 0.1048951
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Robust Speech Event - Dev Data
type: speech-recognition-community-v2/dev_data
args: sr
metrics:
- name: Test WER
type: wer
value: 0.9486784706184245
- name: Test CER
type: cer
value: 0.8084369606584945
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Robust Speech Event - Test Data
type: speech-recognition-community-v2/eval_data
args: sr
metrics:
- name: Test WER
type: wer
value: 94.53
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-large-xls-r-300m-sr-v4
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - SR dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5570
- Wer: 0.3038
### Evaluation Commands
1. To evaluate on mozilla-foundation/common_voice_8_0 with test split
python eval.py --model_id DrishtiSharma/wav2vec2-large-xls-r-300m-sr-v4 --dataset mozilla-foundation/common_voice_8_0 --config sr --split test --log_outputs
2. To evaluate on speech-recognition-community-v2/dev_data
python eval.py --model_id DrishtiSharma/wav2vec2-large-xls-r-300m-sr-v4 --dataset speech-recognition-community-v2/dev_data --config sr --split validation --chunk_length_s 10 --stride_length_s 1
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 800
- num_epochs: 200
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 8.2934 | 7.5 | 300 | 2.9777 | 0.9995 |
| 1.5049 | 15.0 | 600 | 0.5036 | 0.4806 |
| 0.3263 | 22.5 | 900 | 0.5822 | 0.4055 |
| 0.2008 | 30.0 | 1200 | 0.5609 | 0.4032 |
| 0.1543 | 37.5 | 1500 | 0.5203 | 0.3710 |
| 0.1158 | 45.0 | 1800 | 0.6458 | 0.3985 |
| 0.0997 | 52.5 | 2100 | 0.6227 | 0.4013 |
| 0.0834 | 60.0 | 2400 | 0.6048 | 0.3836 |
| 0.0665 | 67.5 | 2700 | 0.6197 | 0.3686 |
| 0.0602 | 75.0 | 3000 | 0.5418 | 0.3453 |
| 0.0524 | 82.5 | 3300 | 0.5310 | 0.3486 |
| 0.0445 | 90.0 | 3600 | 0.5599 | 0.3374 |
| 0.0406 | 97.5 | 3900 | 0.5958 | 0.3327 |
| 0.0358 | 105.0 | 4200 | 0.6017 | 0.3262 |
| 0.0302 | 112.5 | 4500 | 0.5613 | 0.3248 |
| 0.0285 | 120.0 | 4800 | 0.5659 | 0.3462 |
| 0.0213 | 127.5 | 5100 | 0.5568 | 0.3206 |
| 0.0215 | 135.0 | 5400 | 0.6524 | 0.3472 |
| 0.0162 | 142.5 | 5700 | 0.6223 | 0.3458 |
| 0.0137 | 150.0 | 6000 | 0.6625 | 0.3313 |
| 0.0114 | 157.5 | 6300 | 0.5739 | 0.3336 |
| 0.0101 | 165.0 | 6600 | 0.5906 | 0.3285 |
| 0.008 | 172.5 | 6900 | 0.5982 | 0.3112 |
| 0.0076 | 180.0 | 7200 | 0.5399 | 0.3094 |
| 0.0071 | 187.5 | 7500 | 0.5387 | 0.2991 |
| 0.0057 | 195.0 | 7800 | 0.5570 | 0.3038 |
### Framework versions
- Transformers 4.16.2
- Pytorch 1.10.0+cu111
- Datasets 1.18.2
- Tokenizers 0.11.0
|