File size: 4,517 Bytes
5d8500a
451f0af
 
5d8500a
 
451f0af
5d8500a
1ca06a6
451f0af
1ca06a6
 
 
5d8500a
f802820
5d8500a
a427013
451f0af
f2f2561
 
451f0af
 
 
 
eb3e8d8
25318e3
f2f2561
 
 
 
 
 
 
5da19dc
 
 
 
 
 
 
f2f2561
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5d8500a
 
 
 
 
 
 
dd0f11f
5d8500a
 
 
 
324b5e9
5d8500a
324b5e9
5d8500a
324b5e9
5d8500a
324b5e9
5d8500a
324b5e9
5d8500a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
---
language:
- sr
license: apache-2.0
tags:
- automatic-speech-recognition
- generated_from_trainer
- hf-asr-leaderboard
- model_for_talk
- mozilla-foundation/common_voice_8_0
- robust-speech-event
- sr
datasets:
- mozilla-foundation/common_voice_8_0
model-index:
- name: wav2vec2-large-xls-r-300m-sr-v4
  results:
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: Common Voice 8
      type: mozilla-foundation/common_voice_8_0
      args: sr
    metrics:
    - name: Test WER
      type: wer
      value: 0.303313
    - name: Test CER
      type: cer
      value: 0.1048951
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: Robust Speech Event - Dev Data
      type: speech-recognition-community-v2/dev_data
      args: sr
    metrics:
    - name: Test WER
      type: wer
      value: 0.9486784706184245
    - name: Test CER
      type: cer
      value: 0.8084369606584945
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: Robust Speech Event - Test Data
      type: speech-recognition-community-v2/eval_data
      args: sr
    metrics:
    - name: Test WER
      type: wer
      value: 94.53
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# wav2vec2-large-xls-r-300m-sr-v4

This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - SR dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5570
- Wer: 0.3038

### Evaluation Commands

1. To evaluate on mozilla-foundation/common_voice_8_0 with test split

python eval.py --model_id DrishtiSharma/wav2vec2-large-xls-r-300m-sr-v4 --dataset mozilla-foundation/common_voice_8_0 --config sr --split test --log_outputs

2. To evaluate on speech-recognition-community-v2/dev_data

python eval.py --model_id DrishtiSharma/wav2vec2-large-xls-r-300m-sr-v4 --dataset speech-recognition-community-v2/dev_data --config sr --split validation --chunk_length_s 10 --stride_length_s 1

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 800
- num_epochs: 200
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Wer    |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 8.2934        | 7.5   | 300  | 2.9777          | 0.9995 |
| 1.5049        | 15.0  | 600  | 0.5036          | 0.4806 |
| 0.3263        | 22.5  | 900  | 0.5822          | 0.4055 |
| 0.2008        | 30.0  | 1200 | 0.5609          | 0.4032 |
| 0.1543        | 37.5  | 1500 | 0.5203          | 0.3710 |
| 0.1158        | 45.0  | 1800 | 0.6458          | 0.3985 |
| 0.0997        | 52.5  | 2100 | 0.6227          | 0.4013 |
| 0.0834        | 60.0  | 2400 | 0.6048          | 0.3836 |
| 0.0665        | 67.5  | 2700 | 0.6197          | 0.3686 |
| 0.0602        | 75.0  | 3000 | 0.5418          | 0.3453 |
| 0.0524        | 82.5  | 3300 | 0.5310          | 0.3486 |
| 0.0445        | 90.0  | 3600 | 0.5599          | 0.3374 |
| 0.0406        | 97.5  | 3900 | 0.5958          | 0.3327 |
| 0.0358        | 105.0 | 4200 | 0.6017          | 0.3262 |
| 0.0302        | 112.5 | 4500 | 0.5613          | 0.3248 |
| 0.0285        | 120.0 | 4800 | 0.5659          | 0.3462 |
| 0.0213        | 127.5 | 5100 | 0.5568          | 0.3206 |
| 0.0215        | 135.0 | 5400 | 0.6524          | 0.3472 |
| 0.0162        | 142.5 | 5700 | 0.6223          | 0.3458 |
| 0.0137        | 150.0 | 6000 | 0.6625          | 0.3313 |
| 0.0114        | 157.5 | 6300 | 0.5739          | 0.3336 |
| 0.0101        | 165.0 | 6600 | 0.5906          | 0.3285 |
| 0.008         | 172.5 | 6900 | 0.5982          | 0.3112 |
| 0.0076        | 180.0 | 7200 | 0.5399          | 0.3094 |
| 0.0071        | 187.5 | 7500 | 0.5387          | 0.2991 |
| 0.0057        | 195.0 | 7800 | 0.5570          | 0.3038 |


### Framework versions

- Transformers 4.16.2
- Pytorch 1.10.0+cu111
- Datasets 1.18.2
- Tokenizers 0.11.0