--- language: - sr license: apache-2.0 tags: - automatic-speech-recognition - generated_from_trainer - hf-asr-leaderboard - model_for_talk - mozilla-foundation/common_voice_8_0 - robust-speech-event - sr datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: wav2vec2-large-xls-r-300m-sr-v4 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: sr metrics: - name: Test WER type: wer value: 0.303313 - name: Test CER type: cer value: 0.1048951 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: sr metrics: - name: Test WER type: wer value: 0.9486784706184245 - name: Test CER type: cer value: 0.8084369606584945 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: sr metrics: - name: Test WER type: wer value: 94.53 --- # wav2vec2-large-xls-r-300m-sr-v4 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - SR dataset. It achieves the following results on the evaluation set: - Loss: 0.5570 - Wer: 0.3038 ### Evaluation Commands 1. To evaluate on mozilla-foundation/common_voice_8_0 with test split python eval.py --model_id DrishtiSharma/wav2vec2-large-xls-r-300m-sr-v4 --dataset mozilla-foundation/common_voice_8_0 --config sr --split test --log_outputs 2. To evaluate on speech-recognition-community-v2/dev_data python eval.py --model_id DrishtiSharma/wav2vec2-large-xls-r-300m-sr-v4 --dataset speech-recognition-community-v2/dev_data --config sr --split validation --chunk_length_s 10 --stride_length_s 1 ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 800 - num_epochs: 200 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 8.2934 | 7.5 | 300 | 2.9777 | 0.9995 | | 1.5049 | 15.0 | 600 | 0.5036 | 0.4806 | | 0.3263 | 22.5 | 900 | 0.5822 | 0.4055 | | 0.2008 | 30.0 | 1200 | 0.5609 | 0.4032 | | 0.1543 | 37.5 | 1500 | 0.5203 | 0.3710 | | 0.1158 | 45.0 | 1800 | 0.6458 | 0.3985 | | 0.0997 | 52.5 | 2100 | 0.6227 | 0.4013 | | 0.0834 | 60.0 | 2400 | 0.6048 | 0.3836 | | 0.0665 | 67.5 | 2700 | 0.6197 | 0.3686 | | 0.0602 | 75.0 | 3000 | 0.5418 | 0.3453 | | 0.0524 | 82.5 | 3300 | 0.5310 | 0.3486 | | 0.0445 | 90.0 | 3600 | 0.5599 | 0.3374 | | 0.0406 | 97.5 | 3900 | 0.5958 | 0.3327 | | 0.0358 | 105.0 | 4200 | 0.6017 | 0.3262 | | 0.0302 | 112.5 | 4500 | 0.5613 | 0.3248 | | 0.0285 | 120.0 | 4800 | 0.5659 | 0.3462 | | 0.0213 | 127.5 | 5100 | 0.5568 | 0.3206 | | 0.0215 | 135.0 | 5400 | 0.6524 | 0.3472 | | 0.0162 | 142.5 | 5700 | 0.6223 | 0.3458 | | 0.0137 | 150.0 | 6000 | 0.6625 | 0.3313 | | 0.0114 | 157.5 | 6300 | 0.5739 | 0.3336 | | 0.0101 | 165.0 | 6600 | 0.5906 | 0.3285 | | 0.008 | 172.5 | 6900 | 0.5982 | 0.3112 | | 0.0076 | 180.0 | 7200 | 0.5399 | 0.3094 | | 0.0071 | 187.5 | 7500 | 0.5387 | 0.2991 | | 0.0057 | 195.0 | 7800 | 0.5570 | 0.3038 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.2 - Tokenizers 0.11.0