--- license: apache-2.0 base_model: ntu-spml/distilhubert tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: distilhubert-finetuned-gtzan results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: all split: train args: all metrics: - name: Accuracy type: accuracy value: 0.83 --- # distilhubert-finetuned-gtzan This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.9402 - Accuracy: 0.83 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.0151 | 1.0 | 112 | 0.6140 | 0.84 | | 0.0134 | 2.0 | 225 | 0.7191 | 0.86 | | 0.0032 | 3.0 | 337 | 0.9266 | 0.8 | | 0.0043 | 4.0 | 450 | 0.9583 | 0.79 | | 0.0011 | 5.0 | 562 | 0.9526 | 0.82 | | 0.0008 | 6.0 | 675 | 0.9512 | 0.81 | | 0.0007 | 7.0 | 787 | 0.9131 | 0.82 | | 0.0006 | 8.0 | 900 | 0.9234 | 0.82 | | 0.0006 | 9.0 | 1012 | 0.9322 | 0.84 | | 0.0006 | 9.96 | 1120 | 0.9402 | 0.83 | ### Framework versions - Transformers 4.32.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3