DunnBC22 commited on
Commit
9efed5f
·
1 Parent(s): 9c18381

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +87 -0
README.md ADDED
@@ -0,0 +1,87 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - imagefolder
7
+ metrics:
8
+ - accuracy
9
+ model-index:
10
+ - name: vit-base-patch16-224-in21k_Human_Activity_Recognition
11
+ results:
12
+ - task:
13
+ name: Image Classification
14
+ type: image-classification
15
+ dataset:
16
+ name: imagefolder
17
+ type: imagefolder
18
+ config: default
19
+ split: train
20
+ args: default
21
+ metrics:
22
+ - name: Accuracy
23
+ type: accuracy
24
+ value: 0.8380952380952381
25
+ ---
26
+
27
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
28
+ should probably proofread and complete it, then remove this comment. -->
29
+
30
+ # vit-base-patch16-224-in21k_Human_Activity_Recognition
31
+
32
+ This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset.
33
+ It achieves the following results on the evaluation set:
34
+ - Loss: 0.7403
35
+ - Accuracy: 0.8381
36
+ - Weighted f1: 0.8388
37
+ - Micro f1: 0.8381
38
+ - Macro f1: 0.8394
39
+ - Weighted recall: 0.8381
40
+ - Micro recall: 0.8381
41
+ - Macro recall: 0.8390
42
+ - Weighted precision: 0.8421
43
+ - Micro precision: 0.8381
44
+ - Macro precision: 0.8424
45
+
46
+ ## Model description
47
+
48
+ More information needed
49
+
50
+ ## Intended uses & limitations
51
+
52
+ More information needed
53
+
54
+ ## Training and evaluation data
55
+
56
+ More information needed
57
+
58
+ ## Training procedure
59
+
60
+ ### Training hyperparameters
61
+
62
+ The following hyperparameters were used during training:
63
+ - learning_rate: 0.0002
64
+ - train_batch_size: 16
65
+ - eval_batch_size: 8
66
+ - seed: 42
67
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
68
+ - lr_scheduler_type: linear
69
+ - num_epochs: 5
70
+
71
+ ### Training results
72
+
73
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | Weighted f1 | Micro f1 | Macro f1 | Weighted recall | Micro recall | Macro recall | Weighted precision | Micro precision | Macro precision |
74
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:-----------:|:--------:|:--------:|:---------------:|:------------:|:------------:|:------------------:|:---------------:|:---------------:|
75
+ | 1.0814 | 1.0 | 630 | 0.7368 | 0.7794 | 0.7795 | 0.7794 | 0.7798 | 0.7794 | 0.7794 | 0.7797 | 0.7896 | 0.7794 | 0.7896 |
76
+ | 0.5149 | 2.0 | 1260 | 0.6439 | 0.8060 | 0.8049 | 0.8060 | 0.8036 | 0.8060 | 0.8060 | 0.8051 | 0.8136 | 0.8060 | 0.8130 |
77
+ | 0.3023 | 3.0 | 1890 | 0.7026 | 0.8254 | 0.8272 | 0.8254 | 0.8278 | 0.8254 | 0.8254 | 0.8256 | 0.8335 | 0.8254 | 0.8345 |
78
+ | 0.0507 | 4.0 | 2520 | 0.7414 | 0.8317 | 0.8342 | 0.8317 | 0.8348 | 0.8317 | 0.8317 | 0.8321 | 0.8427 | 0.8317 | 0.8438 |
79
+ | 0.0128 | 5.0 | 3150 | 0.7403 | 0.8381 | 0.8388 | 0.8381 | 0.8394 | 0.8381 | 0.8381 | 0.8390 | 0.8421 | 0.8381 | 0.8424 |
80
+
81
+
82
+ ### Framework versions
83
+
84
+ - Transformers 4.25.1
85
+ - Pytorch 1.12.1
86
+ - Datasets 2.8.0
87
+ - Tokenizers 0.12.1