File size: 6,777 Bytes
74b1bac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
import json
import time
import faiss

##############################Sentence_Bert#########################################

import numpy as np
from sentence_transformers import SentenceTransformer  # pylint: disable=C0413

from abc import ABCMeta, abstractmethod


class BaseEmbedding(metaclass=ABCMeta):
    """
    Base Embedding interface.
    """

    @abstractmethod
    def to_embeddings(self, data, **kwargs):
        pass

    @property
    @abstractmethod
    def dimension(self) -> int:
        return 0



class SBERT(BaseEmbedding):
    """Generate sentence embedding for given text using pretrained models of Sentence Transformers.

    :param model: model name, defaults to 'all-MiniLM-L6-v2'.
    :type model: str

    Example:
        .. code-block:: python

            from gptcache.embedding import SBERT

            test_sentence = 'Hello, world.'
            encoder = SBERT('all-MiniLM-L6-v2')
            embed = encoder.to_embeddings(test_sentence)
    """

    def __init__(self, model: str = "all-MiniLM-L6-v2"):
        self.model = SentenceTransformer(model)
        self.model.eval()
        self.__dimension = None

    def to_embeddings(self, data, **_):
        """Generate embedding given text input

        :param data: text in string.
        :type data: str

        :return: a text embedding in shape of (dim,).
        """
        if not isinstance(data, list):
            data = [data]
        emb = self.model.encode(data)
        _, dim = emb.shape
        if not self.__dimension:
            self.__dimension = dim
        return np.array(emb).astype("float32")

    @property
    def dimension(self):
        """Embedding dimension.

        :return: embedding dimension
        """
        if not self.__dimension:
           embd = self.model.encode(["foo"])
           _, self.__dimension = embd.shape
        return self.__dimension
    


#################################### Adapter ########################################
def init_cache(embedding_model: str = "all-MiniLM-L6-v2"):
    """Initializes the cache with a Faiss index and an SBERT model.

    Args:
    embedding_model (str): The name of the SBERT model to use.

    Returns:
    tuple: (index, encoder) where
        - index is a Faiss index for storing embeddings.
        - encoder is an SBERT model instance.
    """

    encoder = SBERT(embedding_model)
    dimension = encoder.dimension
    print(dimension)
    index = faiss.IndexFlatL2(dimension)
    if index.is_trained:
        print('Index initialized and ready for use')

    return index, encoder


def retrieve_cache(json_file):
  try:
    with open(json_file, 'r') as file:
      cache = json.load(file)
  except FileNotFoundError:
      cache = {'questions': [], 'answers': []}

  return cache



def store_cache(json_file, cache):
  with open(json_file, 'w', encoding = 'utf-8') as file:
    json.dump(cache, file)

#####################################################################3
class Cache:
    def __init__(self, embedding = "all-MiniLM-L6-v2" ,  json_file="cache_file.json", thresold=0.5, max_response=100, eviction_policy='FIFO'):
        """Initializes the semantic cache.

        Args:
        json_file (str): The name of the JSON file where the cache is stored.
        thresold (float): The threshold for the Euclidean distance to determine if a question is similar.
        max_response (int): The maximum number of responses the cache can store.
        eviction_policy (str): The policy for evicting items from the cache.
                                This can be any policy, but 'FIFO' (First In First Out) has been implemented for now.
                                If None, no eviction policy will be applied.
        """

        # Initialize Faiss index with Euclidean distance
        self.index, self.encoder = init_cache(embedding)

        # Set Euclidean distance threshold
        # a distance of 0 means identicals sentences
        # We only return from cache sentences under this thresold
        self.euclidean_threshold = thresold
        self.is_missed = True
        self.json_file = json_file
        self.cache = retrieve_cache(self.json_file)
        self.max_response = max_response
        self.eviction_policy = eviction_policy

    def evict(self):

        """Evicts an item from the cache based on the eviction policy."""
        if self.eviction_policy and len(self.cache["questions"]) > self.max_response:
            for _ in range((len(self.cache["questions"]) - self.max_response)):
                if self.eviction_policy == 'FIFO':
                    self.cache["questions"].pop(0)
                    self.cache["answers"].pop(0)
    def cached_hit(self, question: str) -> str:
            """Handles the cache hit logic by retrieving the answer from the cache.

            Args:
            question (str): The input question.
            embedding: The embedding of the question.

            Returns:
            str: The cached answer.
            """
            # Search for the nearest neighbor in the index
            embedding = self.encoder.to_embeddings([question])
            self.index.nprobe = 8
            D, I = self.index.search(embedding, 1)
            print(D)
            if D[0] >= 0:
                if I[0][0] >= 0 and D[0][0] / 100 <= self.euclidean_threshold:
                    row_id = int(I[0][0])
                    print('Answer recovered from Cache.')
                    print(f'Distance: {D[0][0]:.3f} (Threshold: {self.euclidean_threshold})')
                    print(f'Found in cache at row: {row_id} with score: {D[0][0]:.3f}')
                    self.is_missed =False
                    return self.cache['answers'][row_id]
            self.is_missed = True
            return embedding , self.is_missed

    
    def cache_miss(self, question: str, embedding , answer) -> str:
        """Handles the cache miss logic by querying the model and updating the cache.

        Args:
        question (str): The input question.
        embedding: The embedding of the question take from cache_hit if hit nothing
        answer (str) : The answer from LLMs
        Returns:
        Append to cache and return answer.
        """

        # Update the cache with the new question, embedding, and answer
        self.cache['questions'].append(question)
        self.cache['answers'].append(answer)

        print('Answer not found in cache, appending new answer.')
        print(f'Response: {answer}')

        # Add the new embedding to the index
        self.index.add(embedding)

        # Evict items if necessary
        self.evict()

        # Save the updated cache to the JSON file
        store_cache(self.json_file, self.cache)
        self.is_missed = False
        return answer