--- language: - vi license: apache-2.0 base_model: openai/whisper-base tags: - generated_from_trainer datasets: - vivos metrics: - wer model-index: - name: Whisper Base Vi - Duy Ta results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Vivos type: vivos config: clean vivos split: None metrics: - name: Wer type: wer value: 25.058275058275058 --- # Whisper Base Vi - DuyTa This model is a fine-tuned version of [openai/whisper-base](https://huggingface.co/openai/whisper-base) on the Vivos dataset. It achieves the following results on the evaluation set: - Loss: 0.2565 - Wer: 25.0583 ## Model description Finetune Whisper model on Vietnamese Dataset ## Intended uses & limitations More information needed ## Training and evaluation data Vivos ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.2096 | 1.37 | 1000 | 0.2949 | 32.0383 | | 0.1205 | 2.74 | 2000 | 0.2548 | 26.8583 | | 0.0767 | 4.12 | 3000 | 0.2549 | 25.3432 | | 0.0532 | 5.49 | 4000 | 0.2565 | 25.0583 | ### Framework versions - Transformers 4.31.0.dev0 - Pytorch 2.0.1+cu117 - Datasets 2.13.1 - Tokenizers 0.13.3