File size: 1,684 Bytes
b8b327b
e6f56b2
e219269
 
b8b327b
e219269
b8b327b
 
e219269
b8b327b
 
e219269
b8b327b
e219269
 
b8b327b
e219269
b8b327b
e219269
 
b8b327b
e219269
 
 
 
 
b8b327b
 
 
10c43ab
e219269
 
b8b327b
e219269
b8b327b
e219269
 
 
 
9c9f278
b8b327b
e219269
b8b327b
 
 
e219269
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
---
base_model: meta-llama/Meta-Llama-3-8B-Instruct
library_name: transformers
model_name: outputs3
tags:
- generated_from_trainer
- trl
- sft
licence: license
---

# Model Card for outputs3

This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct).
It has been trained using [TRL](https://github.com/huggingface/trl).

## Quick start

```python
from transformers import pipeline

question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="EdBerg/outputs3", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```

## Training procedure

[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/harpermia882/huggingface/runs/xrbrxdwn)

This model was trained with SFT.

### Framework versions

- TRL: 0.12.0
- Transformers: 4.46.1
- Pytorch: 2.5.0+cu121
- Datasets: 3.1.0
- Tokenizers: 0.20.2

## Citations



Cite TRL as:
    
```bibtex
@misc{vonwerra2022trl,
	title        = {{TRL: Transformer Reinforcement Learning}},
	author       = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
	year         = 2020,
	journal      = {GitHub repository},
	publisher    = {GitHub},
	howpublished = {\url{https://github.com/huggingface/trl}}
}
```