File size: 5,476 Bytes
722142d e90a97b 722142d 7697769 722142d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 |
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Model README</title>
<style>
body {
background: linear-gradient(-45deg, #0a0a0a, #121212, #1a1a1a);
color: #E0E0E0;
font-family: 'Segoe UI', system-ui;
margin: 0;
padding: 20px;
min-height: 100vh;
animation: gradient 15s ease infinite;
background-size: 400% 400%;
text-align: center;
}
@keyframes gradient {
0% { background-position: 0% 50%; }
50% { background-position: 100% 50%; }
100% { background-position: 0% 50%; }
}
.container {
max-width: 800px;
margin: auto;
}
.model-image {
width: 100%;
border-radius: 12px;
filter: drop-shadow(0 0 10px rgba(255, 255, 255, 0.1));
animation: float 6s ease-in-out infinite;
}
@keyframes float {
0%, 100% { transform: translateY(0); }
50% { transform: translateY(-20px); }
}
.box {
background: rgba(30, 30, 30, 0.9);
border-radius: 12px;
padding: 20px;
margin: 25px 0;
backdrop-filter: blur(10px);
border: 1px solid rgba(255, 255, 255, 0.1);
text-align: left;
}
h2 {
border-left: 4px solid #0ff;
padding-left: 15px;
margin: 0 0 15px 0;
background: linear-gradient(90deg, transparent, rgba(0, 255, 255, 0.1));
text-transform: uppercase;
letter-spacing: 2px;
color: #fff;
}
.yaml-content {
background: #191919;
border-radius: 8px;
padding: 10px;
margin-top: 10px;
font-family: monospace;
white-space: pre-wrap;
color: #E0E0E0;
border-left: 4px solid #0ff;
}
/* Custom Scrollbar */
::-webkit-scrollbar { width: 8px; }
::-webkit-scrollbar-track { background: #121212; }
::-webkit-scrollbar-thumb {
background: #333;
border-radius: 4px;
}
</style>
</head>
<body>
<div class="container">
<img src="https://cdn-uploads.huggingface.co/production/uploads/66c26b6fb01b19d8c3c2467b/tqI2XfovbkA_0ss6IKlPq.png" class="model-image" alt="Model Visualization">
<div class="box">
<h2>๐ Overview</h2>
<p>This is the second in a line of models dedicated to creating Stable-Diffusion prompts when given a character appearance. Made for the CharGen Project, This has been finetuned ontop of Delta-Vector/Holland-4B-V1</>
</div>
<div class="box">
<h2>โ๏ธ Quants</h2>
<p>Available quantization formats:</p>
<ul>
<li>GGUF: https://huggingface.co/mradermacher/SDPrompter4b-GGUF</li>
<li>EXL2: https://huggingface.co/</li>
</ul>
</div>
<div class="box">
<h2>๐ฌ Prompting</h2>
<p><strong>Recommended format: ChatML, Use the following system prompt for the model. I'd advise against setting a high amount of output tokens as the model loops, use 0.1 min-p and temp-1 to keep it coherent.</strong></p>
<code>Create a prompt for Stable Diffusion based on the information below.</code>
</div>
<div class="box">
<h2>๐ Credits</h2>
<p>Finetuned on 1xRTX6000 provided by Kubernetes_bad, All credits goes to Kubernetes_bad, LucyKnada and the rest of Anthracite.</p>
</div>
<div class="box">
<h2>๐ ๏ธ Axolotl Config)</h2>
<pre>
base_model: Delta-Vector/Holland-4B-V1
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
trust_remote_code: true
load_in_8bit: false
load_in_4bit: false
strict: false
datasets:
- path: NewEden/CivitAI-SD-Prompts
datasets:
- path: NewEden/CivitAI-Prompts-Sharegpt
type: chat_template
chat_template: chatml
roles_to_train: ["gpt"]
field_messages: conversations
message_field_role: from
message_field_content: value
train_on_eos: turn
dataset_prepared_path:
val_set_size: 0.02
output_dir: ./outputs/out2
sequence_len: 8192
sample_packing: true
eval_sample_packing: false
pad_to_sequence_len: true
plugins:
- axolotl.integrations.liger.LigerPlugin
liger_rope: true
liger_rms_norm: true
liger_swiglu: true
liger_fused_linear_cross_entropy: true
wandb_project: SDprompter-final
wandb_entity:
wandb_watch:
wandb_name: SDprompter-final
wandb_log_model:
gradient_accumulation_steps: 16
micro_batch_size: 1
num_epochs: 4
optimizer: paged_adamw_8bit
lr_scheduler: cosine
learning_rate: 0.00001
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: true
gradient_checkpointing: true
gradient_checkpointing_kwargs:
use_reentrant: false
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_ratio: 0.05
evals_per_epoch: 4
saves_per_epoch: 1
debug:
weight_decay: 0.01
special_tokens:
pad_token: <|finetune_right_pad_id|>
eos_token: <|eot_id|>
auto_resume_from_checkpoints: true
</pre>
</div>
</div>
</div>
</body>
</html> |