--- library_name: peft tags: - generated_from_trainer base_model: mistralai_Mistral-Nemo-Instruct-2407 model-index: - name: 12b-out results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.5.0` ```yaml base_model: mistralai_Mistral-Nemo-Instruct-2407 model_type: AutoModelForCausalLM tokenizer_type: AutoTokenizer plugins: - axolotl.integrations.liger.LigerPlugin liger_rope: true liger_rms_norm: true liger_swiglu: true liger_fused_linear_cross_entropy: true load_in_8bit: false load_in_4bit: false strict: false datasets: - path: NewEden/OpenCAI-ShareGPT type: chat_template # chat_template: mistralv3tekken roles_to_train: ["gpt"] field_messages: conversations message_field_role: from message_field_content: value train_on_eos: turn - path: NewEden/vanilla-backrooms-claude-sharegpt type: chat_template # chat_template: mistralv3tekken roles_to_train: ["gpt"] field_messages: conversations message_field_role: from message_field_content: value train_on_eos: turn - path: anthracite-org/kalo_opus_misc_240827 type: chat_template # chat_template: mistralv3tekken roles_to_train: ["gpt"] field_messages: conversations message_field_role: from message_field_content: value train_on_eos: turn - path: anthracite-org/kalo_misc_part2 type: chat_template # chat_template: mistralv3tekken roles_to_train: ["gpt"] field_messages: conversations message_field_role: from message_field_content: value train_on_eos: turn - path: NewEden/Roleplay-Logs-V2 type: chat_template # chat_template: mistralv3tekken roles_to_train: ["gpt"] field_messages: conversations message_field_role: from message_field_content: value train_on_eos: turn dataset_prepared_path: dataset_prepared val_set_size: 0.0 output_dir: 12b-out sequence_len: 16384 sample_packing: true pad_to_sequence_len: true adapter: lora lora_model_dir: lora_r: 128 lora_alpha: 16 lora_dropout: 0.05 #lora_target_linear: #lora_fan_in_fan_out: true peft_use_rslora: true lora_target_modules: - gate_proj - down_proj - up_proj - q_proj - v_proj - k_proj - o_proj wandb_project: 12b-control wandb_entity: wandb_watch: wandb_name: 12b-control wandb_log_model: gradient_accumulation_steps: 2 micro_batch_size: 1 num_epochs: 2 optimizer: paged_adamw_8bit lr_scheduler: cosine learning_rate: 0.00001 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: false gradient_checkpointing: unsloth #gradient_checkpointing_kwargs: # use_reentrant: false early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true warmup_steps: 40 evals_per_epoch: eval_table_size: eval_max_new_tokens: saves_per_epoch: 2 debug: deepspeed: /workspace/axolotl/deepspeed_configs/zero3_bf16.json weight_decay: 0.01 fsdp: fsdp_config: special_tokens: pad_token: ```

# 12b-out This model was trained from scratch on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - total_eval_batch_size: 4 - optimizer: Use OptimizerNames.PAGED_ADAMW_8BIT with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 40 - num_epochs: 2 ### Training results ### Framework versions - PEFT 0.13.2 - Transformers 4.46.1 - Pytorch 2.3.1+cu121 - Datasets 3.0.1 - Tokenizers 0.20.3