--- tags: - text-generation license: cc-by-nc-sa-4.0 language: - ko base_model: TinyLlama/TinyLlama-1.1B-Chat-v1.0 pipeline_tag: text-generation --- # **DataVortexTL-1.1B-v0.1** DataVortex ## **License** [cc-by-nc-sa-4.0](https://creativecommons.org/licenses/by-nc-sa/4.0/) ## **Model Details** ### **Base Model** [TinyLlama/TinyLlama-1.1B-Chat-v1.0](https://huggingface.co/TinyLlama/TinyLlama-1.1B-Chat-v1.0) ### **Trained On** H100 80GB 1ea ### **Instruction format** ## **Model Benchmark** ### **Ko-LLM-Leaderboard** On Benchmarking... # **Implementation Code** Since, chat_template already contains insturction format above. You can use the code below. ```python from transformers import AutoModelForCausalLM, AutoTokenizer device = "cuda" model = AutoModelForCausalLM.from_pretrained("Edentns/DataVortexTL-1.1B-v0.1", device_map=device) tokenizer = AutoTokenizer.from_pretrained("Edentns/DataVortexTL-1.1B-v0.1") messages = [ { "role": "user", "content": "대한민국의 수도는 어디야?" } ] encoded = tokenizer.apply_chat_template( messages, add_generation_prompt=True, return_tensors="pt", return_token_type_ids=False ).to(device) decoded = model.generate( input_ids=encoded, temperature=0.2, top_p=0.9, repetition_penalty=1.2, do_sample=True, max_length=4096, eos_token_id=tokenizer.eos_token_id, pad_token_id=tokenizer.eos_token_id ) decoded = decoded[0][encoded.shape[1]:decoded[0].shape[-1]] decoded_text = tokenizer.decode(decoded, skip_special_tokens=True) print(decoded_text) ```
Logo