--- language: - it license: apache-2.0 tags: - whisper-event - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: Whisper Large v2 Italian results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: mozilla-foundation/common_voice_11_0 it type: mozilla-foundation/common_voice_11_0 config: it split: test args: it metrics: - name: Wer type: wer value: 4.557596215181799 --- # Whisper Large v2 Italian This model is a fine-tuned version of [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) on the mozilla-foundation/common_voice_11_0 it dataset. It achieves the following results on the evaluation set: - Loss: 0.1332 - Wer: 4.5576 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - distributed_type: multi-GPU - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 6000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.1684 | 0.17 | 1000 | 0.1620 | 6.4620 | | 0.1174 | 0.33 | 2000 | 0.1418 | 5.5663 | | 0.069 | 1.1 | 3000 | 0.1400 | 5.2865 | | 0.0649 | 1.27 | 4000 | 0.1315 | 4.8932 | | 0.0334 | 2.04 | 5000 | 0.1368 | 4.6845 | | 0.037 | 2.21 | 6000 | 0.1332 | 4.5576 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.1+cu117 - Datasets 2.8.1.dev0 - Tokenizers 0.13.2