Edwinlasso99 commited on
Commit
35efeb4
·
verified ·
1 Parent(s): 0236dad

End of training

Browse files
Files changed (1) hide show
  1. README.md +17 -37
README.md CHANGED
@@ -1,5 +1,5 @@
1
  ---
2
- library_name: transformers
3
  license: mit
4
  base_model: FacebookAI/xlm-roberta-large
5
  tags:
@@ -13,29 +13,7 @@ metrics:
13
  - accuracy
14
  model-index:
15
  - name: finetuned_model
16
- results:
17
- - task:
18
- name: Token Classification
19
- type: token-classification
20
- dataset:
21
- name: biobert_json
22
- type: biobert_json
23
- config: Biobert_json
24
- split: validation
25
- args: Biobert_json
26
- metrics:
27
- - name: Precision
28
- type: precision
29
- value: 0.9387372613330209
30
- - name: Recall
31
- type: recall
32
- value: 0.9591861160981449
33
- - name: F1
34
- type: f1
35
- value: 0.9488515273502248
36
- - name: Accuracy
37
- type: accuracy
38
- value: 0.9818015127206051
39
  ---
40
 
41
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -45,11 +23,11 @@ should probably proofread and complete it, then remove this comment. -->
45
 
46
  This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the biobert_json dataset.
47
  It achieves the following results on the evaluation set:
48
- - Loss: 0.0725
49
- - Precision: 0.9387
50
- - Recall: 0.9592
51
- - F1: 0.9489
52
- - Accuracy: 0.9818
53
 
54
  ## Model description
55
 
@@ -69,26 +47,28 @@ More information needed
69
 
70
  The following hyperparameters were used during training:
71
  - learning_rate: 2e-05
72
- - train_batch_size: 16
73
- - eval_batch_size: 16
74
  - seed: 42
75
  - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
76
  - lr_scheduler_type: linear
77
- - num_epochs: 3
78
- - mixed_precision_training: Native AMP
79
 
80
  ### Training results
81
 
82
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
83
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
84
- | 0.1161 | 1.0 | 612 | 0.0820 | 0.9354 | 0.9466 | 0.9410 | 0.9784 |
85
- | 0.08 | 2.0 | 1224 | 0.0764 | 0.9322 | 0.9563 | 0.9441 | 0.9803 |
86
- | 0.0547 | 3.0 | 1836 | 0.0725 | 0.9387 | 0.9592 | 0.9489 | 0.9818 |
 
 
87
 
88
 
89
  ### Framework versions
90
 
 
91
  - Transformers 4.46.3
92
  - Pytorch 2.5.1+cu121
93
  - Datasets 3.2.0
94
- - Tokenizers 0.20.3
 
1
  ---
2
+ library_name: peft
3
  license: mit
4
  base_model: FacebookAI/xlm-roberta-large
5
  tags:
 
13
  - accuracy
14
  model-index:
15
  - name: finetuned_model
16
+ results: []
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17
  ---
18
 
19
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
23
 
24
  This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the biobert_json dataset.
25
  It achieves the following results on the evaluation set:
26
+ - Loss: nan
27
+ - Precision: 0.0025
28
+ - Recall: 0.0130
29
+ - F1: 0.0042
30
+ - Accuracy: 0.0207
31
 
32
  ## Model description
33
 
 
47
 
48
  The following hyperparameters were used during training:
49
  - learning_rate: 2e-05
50
+ - train_batch_size: 32
51
+ - eval_batch_size: 32
52
  - seed: 42
53
  - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
54
  - lr_scheduler_type: linear
55
+ - num_epochs: 5
 
56
 
57
  ### Training results
58
 
59
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
60
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
61
+ | 0.0 | 1.0 | 306 | nan | 0.0025 | 0.0130 | 0.0042 | 0.0207 |
62
+ | 0.0 | 2.0 | 612 | nan | 0.0025 | 0.0130 | 0.0042 | 0.0207 |
63
+ | 0.0 | 3.0 | 918 | nan | 0.0025 | 0.0130 | 0.0042 | 0.0207 |
64
+ | 0.0 | 4.0 | 1224 | nan | 0.0025 | 0.0130 | 0.0042 | 0.0207 |
65
+ | 0.0 | 5.0 | 1530 | nan | 0.0025 | 0.0130 | 0.0042 | 0.0207 |
66
 
67
 
68
  ### Framework versions
69
 
70
+ - PEFT 0.13.2
71
  - Transformers 4.46.3
72
  - Pytorch 2.5.1+cu121
73
  - Datasets 3.2.0
74
+ - Tokenizers 0.20.3