Edwinlasso99
commited on
End of training
Browse files
README.md
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
---
|
2 |
-
library_name:
|
3 |
license: mit
|
4 |
base_model: FacebookAI/xlm-roberta-large
|
5 |
tags:
|
@@ -13,29 +13,7 @@ metrics:
|
|
13 |
- accuracy
|
14 |
model-index:
|
15 |
- name: finetuned_model
|
16 |
-
results:
|
17 |
-
- task:
|
18 |
-
name: Token Classification
|
19 |
-
type: token-classification
|
20 |
-
dataset:
|
21 |
-
name: biobert_json
|
22 |
-
type: biobert_json
|
23 |
-
config: Biobert_json
|
24 |
-
split: validation
|
25 |
-
args: Biobert_json
|
26 |
-
metrics:
|
27 |
-
- name: Precision
|
28 |
-
type: precision
|
29 |
-
value: 0.9387372613330209
|
30 |
-
- name: Recall
|
31 |
-
type: recall
|
32 |
-
value: 0.9591861160981449
|
33 |
-
- name: F1
|
34 |
-
type: f1
|
35 |
-
value: 0.9488515273502248
|
36 |
-
- name: Accuracy
|
37 |
-
type: accuracy
|
38 |
-
value: 0.9818015127206051
|
39 |
---
|
40 |
|
41 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -45,11 +23,11 @@ should probably proofread and complete it, then remove this comment. -->
|
|
45 |
|
46 |
This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the biobert_json dataset.
|
47 |
It achieves the following results on the evaluation set:
|
48 |
-
- Loss:
|
49 |
-
- Precision: 0.
|
50 |
-
- Recall: 0.
|
51 |
-
- F1: 0.
|
52 |
-
- Accuracy: 0.
|
53 |
|
54 |
## Model description
|
55 |
|
@@ -69,26 +47,28 @@ More information needed
|
|
69 |
|
70 |
The following hyperparameters were used during training:
|
71 |
- learning_rate: 2e-05
|
72 |
-
- train_batch_size:
|
73 |
-
- eval_batch_size:
|
74 |
- seed: 42
|
75 |
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
76 |
- lr_scheduler_type: linear
|
77 |
-
- num_epochs:
|
78 |
-
- mixed_precision_training: Native AMP
|
79 |
|
80 |
### Training results
|
81 |
|
82 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
83 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
84 |
-
| 0.
|
85 |
-
| 0.
|
86 |
-
| 0.
|
|
|
|
|
87 |
|
88 |
|
89 |
### Framework versions
|
90 |
|
|
|
91 |
- Transformers 4.46.3
|
92 |
- Pytorch 2.5.1+cu121
|
93 |
- Datasets 3.2.0
|
94 |
-
- Tokenizers 0.20.3
|
|
|
1 |
---
|
2 |
+
library_name: peft
|
3 |
license: mit
|
4 |
base_model: FacebookAI/xlm-roberta-large
|
5 |
tags:
|
|
|
13 |
- accuracy
|
14 |
model-index:
|
15 |
- name: finetuned_model
|
16 |
+
results: []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
---
|
18 |
|
19 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
23 |
|
24 |
This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the biobert_json dataset.
|
25 |
It achieves the following results on the evaluation set:
|
26 |
+
- Loss: nan
|
27 |
+
- Precision: 0.0025
|
28 |
+
- Recall: 0.0130
|
29 |
+
- F1: 0.0042
|
30 |
+
- Accuracy: 0.0207
|
31 |
|
32 |
## Model description
|
33 |
|
|
|
47 |
|
48 |
The following hyperparameters were used during training:
|
49 |
- learning_rate: 2e-05
|
50 |
+
- train_batch_size: 32
|
51 |
+
- eval_batch_size: 32
|
52 |
- seed: 42
|
53 |
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
54 |
- lr_scheduler_type: linear
|
55 |
+
- num_epochs: 5
|
|
|
56 |
|
57 |
### Training results
|
58 |
|
59 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
60 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
61 |
+
| 0.0 | 1.0 | 306 | nan | 0.0025 | 0.0130 | 0.0042 | 0.0207 |
|
62 |
+
| 0.0 | 2.0 | 612 | nan | 0.0025 | 0.0130 | 0.0042 | 0.0207 |
|
63 |
+
| 0.0 | 3.0 | 918 | nan | 0.0025 | 0.0130 | 0.0042 | 0.0207 |
|
64 |
+
| 0.0 | 4.0 | 1224 | nan | 0.0025 | 0.0130 | 0.0042 | 0.0207 |
|
65 |
+
| 0.0 | 5.0 | 1530 | nan | 0.0025 | 0.0130 | 0.0042 | 0.0207 |
|
66 |
|
67 |
|
68 |
### Framework versions
|
69 |
|
70 |
+
- PEFT 0.13.2
|
71 |
- Transformers 4.46.3
|
72 |
- Pytorch 2.5.1+cu121
|
73 |
- Datasets 3.2.0
|
74 |
+
- Tokenizers 0.20.3
|