File size: 2,505 Bytes
a400f0b 056e214 a400f0b 056e214 a400f0b f0d989e a400f0b 056e214 a400f0b 056e214 a400f0b 056e214 a400f0b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 |
---
license: mit
base_model: microsoft/Phi-3-mini-128k-instruct
tags:
- alignment-handbook
- trl
- dpo
- generated_from_trainer
- trl
- dpo
- generated_from_trainer
datasets:
- princeton-nlp/llama3-ultrafeedback
model-index:
- name: phi-3-mini-128k-instruct-dpo-lr-5e-07
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
## Description
This model was trained as part of the Reinforcement Learning - 24 project at Peking University, focusing on [dpo].
## Authors
- Ejafa Bassam
- Yaroslav Ponomarenko
# phi-3-mini-128k-instruct-dpo-lr-5e-07
This model is a fine-tuned version of [microsoft/Phi-3-mini-128k-instruct](https://huggingface.co/microsoft/Phi-3-mini-128k-instruct) on the princeton-nlp/llama3-ultrafeedback dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6096
- Rewards/chosen: -1.0852
- Rewards/rejected: -1.4834
- Rewards/accuracies: 0.6976
- Rewards/margins: 0.3982
- Logps/rejected: -434.2651
- Logps/chosen: -403.4777
- Logits/rejected: 1.6861
- Logits/chosen: 1.6753
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-07
- train_batch_size: 2
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 8
- total_train_batch_size: 128
- total_eval_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
|:-------------:|:------:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|
| 0.62 | 0.8549 | 400 | 0.6104 | -1.0659 | -1.4533 | 0.6976 | 0.3875 | -433.6641 | -403.0910 | 1.6821 | 1.6709 |
### Framework versions
- Transformers 4.41.2
- Pytorch 2.3.1+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1
|