--- library_name: peft license: apache-2.0 base_model: google-bert/bert-base-cased tags: - generated_from_trainer model-index: - name: beautiful-worm-91 results: [] --- # beautiful-worm-91 This model is a fine-tuned version of [google-bert/bert-base-cased](https://huggingface.co/google-bert/bert-base-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5762 - Hamming Loss: 0.2815 - Zero One Loss: 1.0 - Jaccard Score: 0.8606 - Hamming Loss Optimised: 0.1121 - Hamming Loss Threshold: 0.7112 - Zero One Loss Optimised: 0.8762 - Zero One Loss Threshold: 0.5937 - Jaccard Score Optimised: 0.8487 - Jaccard Score Threshold: 0.3892 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1.27612271859294e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 2024 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 7 ### Training results | Training Loss | Epoch | Step | Validation Loss | Hamming Loss | Zero One Loss | Jaccard Score | Hamming Loss Optimised | Hamming Loss Threshold | Zero One Loss Optimised | Zero One Loss Threshold | Jaccard Score Optimised | Jaccard Score Threshold | |:-------------:|:-----:|:----:|:---------------:|:------------:|:-------------:|:-------------:|:----------------------:|:----------------------:|:-----------------------:|:-----------------------:|:-----------------------:|:-----------------------:| | No log | 1.0 | 100 | 0.7158 | 0.4196 | 1.0 | 0.8558 | 0.1123 | 0.7884 | 0.8688 | 0.7125 | 0.8208 | 0.5703 | | No log | 2.0 | 200 | 0.6802 | 0.3589 | 1.0 | 0.8562 | 0.1123 | 0.8010 | 0.89 | 0.6870 | 0.8545 | 0.5943 | | No log | 3.0 | 300 | 0.6461 | 0.3409 | 1.0 | 0.8701 | 0.1121 | 0.7495 | 0.885 | 0.6670 | 0.8457 | 0.6441 | | No log | 4.0 | 400 | 0.6162 | 0.3392 | 1.0 | 0.8767 | 0.1123 | 0.7474 | 0.8812 | 0.6319 | 0.8506 | 0.4177 | | 0.6723 | 5.0 | 500 | 0.5936 | 0.3326 | 1.0 | 0.8785 | 0.1121 | 0.7112 | 0.8775 | 0.6089 | 0.8457 | 0.6006 | | 0.6723 | 6.0 | 600 | 0.5804 | 0.2973 | 1.0 | 0.8651 | 0.1121 | 0.7112 | 0.875 | 0.5979 | 0.8447 | 0.5836 | | 0.6723 | 7.0 | 700 | 0.5762 | 0.2815 | 1.0 | 0.8606 | 0.1121 | 0.7112 | 0.8762 | 0.5937 | 0.8487 | 0.3892 | ### Framework versions - PEFT 0.13.2 - Transformers 4.47.0 - Pytorch 2.5.1+cu124 - Datasets 3.1.0 - Tokenizers 0.21.0