File size: 1,725 Bytes
2525579
 
 
 
 
 
 
 
 
 
 
bd8d283
 
 
 
2525579
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
---
license: apache-2.0
library_name: peft
tags:
- generated_from_trainer
metrics:
- bleu
base_model: Helsinki-NLP/opus-mt-ar-en
model-index:
- name: my_awesome_peft_finetuned_helsinki_model
  results: []
language:
- ar
- en
pipeline_tag: translation
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# my_awesome_peft_finetuned_helsinki_model

This model is a fine-tuned version of [Helsinki-NLP/opus-mt-ar-en](https://huggingface.co/Helsinki-NLP/opus-mt-ar-en) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.2304
- Bleu: 45.042
- Gen Len: 15.21

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 24
- eval_batch_size: 24
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Bleu    | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|
| 1.377         | 1.0   | 2500 | 1.2377          | 45.1725 | 15.2305 |
| 1.3663        | 2.0   | 5000 | 1.2313          | 45.0712 | 15.219  |
| 1.3591        | 3.0   | 7500 | 1.2304          | 45.042  | 15.21   |


### Framework versions

- PEFT 0.8.2
- Transformers 4.37.2
- Pytorch 2.1.0+cu121
- Datasets 2.17.1
- Tokenizers 0.15.2