Model save
Browse files
README.md
CHANGED
@@ -20,7 +20,7 @@ model-index:
|
|
20 |
metrics:
|
21 |
- name: Accuracy
|
22 |
type: accuracy
|
23 |
-
value: 0.
|
24 |
---
|
25 |
|
26 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -30,8 +30,8 @@ should probably proofread and complete it, then remove this comment. -->
|
|
30 |
|
31 |
This model was trained from scratch on the imagefolder dataset.
|
32 |
It achieves the following results on the evaluation set:
|
33 |
-
- Loss:
|
34 |
-
- Accuracy: 0.
|
35 |
|
36 |
## Model description
|
37 |
|
@@ -59,62 +59,112 @@ The following hyperparameters were used during training:
|
|
59 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
60 |
- lr_scheduler_type: linear
|
61 |
- lr_scheduler_warmup_ratio: 0.1
|
62 |
-
- num_epochs:
|
63 |
|
64 |
### Training results
|
65 |
|
66 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
67 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
68 |
-
| 1.
|
69 |
-
|
|
70 |
-
|
|
71 |
-
|
|
72 |
-
| 0.
|
73 |
-
| 0.
|
74 |
-
| 0.
|
75 |
-
| 0.
|
76 |
-
| 0.
|
77 |
-
| 0.
|
78 |
-
| 0.
|
79 |
-
| 0.
|
80 |
-
| 0.
|
81 |
-
| 0.
|
82 |
-
| 0.
|
83 |
-
| 0.
|
84 |
-
| 0.
|
85 |
-
| 0.
|
86 |
-
| 0.
|
87 |
-
| 0.
|
88 |
-
| 0.
|
89 |
-
| 0.
|
90 |
-
| 0.
|
91 |
-
| 0.
|
92 |
-
| 0.
|
93 |
-
| 0.
|
94 |
-
| 0.
|
95 |
-
| 0.
|
96 |
-
| 0.
|
97 |
-
| 0.
|
98 |
-
| 0.
|
99 |
-
| 0.
|
100 |
-
| 0.
|
101 |
-
| 0.
|
102 |
-
| 0.
|
103 |
-
| 0.
|
104 |
-
| 0.
|
105 |
-
| 0.
|
106 |
-
| 0.
|
107 |
-
| 0.
|
108 |
-
| 0.
|
109 |
-
| 0.
|
110 |
-
| 0.
|
111 |
-
| 0.
|
112 |
-
| 0.
|
113 |
-
| 0.
|
114 |
-
| 0.
|
115 |
-
| 0.
|
116 |
-
| 0.
|
117 |
-
| 0.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
118 |
|
119 |
|
120 |
### Framework versions
|
|
|
20 |
metrics:
|
21 |
- name: Accuracy
|
22 |
type: accuracy
|
23 |
+
value: 0.9816143497757848
|
24 |
---
|
25 |
|
26 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
30 |
|
31 |
This model was trained from scratch on the imagefolder dataset.
|
32 |
It achieves the following results on the evaluation set:
|
33 |
+
- Loss: 0.0603
|
34 |
+
- Accuracy: 0.9816
|
35 |
|
36 |
## Model description
|
37 |
|
|
|
59 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
60 |
- lr_scheduler_type: linear
|
61 |
- lr_scheduler_warmup_ratio: 0.1
|
62 |
+
- num_epochs: 100
|
63 |
|
64 |
### Training results
|
65 |
|
66 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
67 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
68 |
+
| 1.0105 | 0.99 | 78 | 0.9788 | 0.5251 |
|
69 |
+
| 0.8749 | 2.0 | 157 | 0.8167 | 0.6323 |
|
70 |
+
| 0.7352 | 2.99 | 235 | 0.6498 | 0.7179 |
|
71 |
+
| 0.647 | 4.0 | 314 | 0.5619 | 0.7630 |
|
72 |
+
| 0.5949 | 4.99 | 392 | 0.5068 | 0.7892 |
|
73 |
+
| 0.5773 | 6.0 | 471 | 0.4673 | 0.8058 |
|
74 |
+
| 0.5401 | 6.99 | 549 | 0.4277 | 0.8211 |
|
75 |
+
| 0.5116 | 8.0 | 628 | 0.4089 | 0.8314 |
|
76 |
+
| 0.4751 | 8.99 | 706 | 0.3891 | 0.8399 |
|
77 |
+
| 0.4659 | 10.0 | 785 | 0.3599 | 0.8574 |
|
78 |
+
| 0.4457 | 10.99 | 863 | 0.3493 | 0.8592 |
|
79 |
+
| 0.4021 | 12.0 | 942 | 0.3180 | 0.8751 |
|
80 |
+
| 0.3925 | 12.99 | 1020 | 0.2824 | 0.8863 |
|
81 |
+
| 0.3737 | 14.0 | 1099 | 0.2686 | 0.8960 |
|
82 |
+
| 0.3573 | 14.99 | 1177 | 0.2509 | 0.8978 |
|
83 |
+
| 0.3463 | 16.0 | 1256 | 0.2214 | 0.9101 |
|
84 |
+
| 0.3174 | 16.99 | 1334 | 0.2233 | 0.9143 |
|
85 |
+
| 0.3029 | 18.0 | 1413 | 0.2065 | 0.9222 |
|
86 |
+
| 0.27 | 18.99 | 1491 | 0.1900 | 0.9287 |
|
87 |
+
| 0.2796 | 20.0 | 1570 | 0.1843 | 0.9294 |
|
88 |
+
| 0.2649 | 20.99 | 1648 | 0.1811 | 0.9291 |
|
89 |
+
| 0.2561 | 22.0 | 1727 | 0.1679 | 0.9345 |
|
90 |
+
| 0.2384 | 22.99 | 1805 | 0.1579 | 0.9401 |
|
91 |
+
| 0.2415 | 24.0 | 1884 | 0.1414 | 0.9462 |
|
92 |
+
| 0.2282 | 24.99 | 1962 | 0.1478 | 0.9439 |
|
93 |
+
| 0.2345 | 26.0 | 2041 | 0.1523 | 0.9419 |
|
94 |
+
| 0.2196 | 26.99 | 2119 | 0.1240 | 0.9529 |
|
95 |
+
| 0.2118 | 28.0 | 2198 | 0.1228 | 0.9502 |
|
96 |
+
| 0.1977 | 28.99 | 2276 | 0.1192 | 0.9565 |
|
97 |
+
| 0.1994 | 30.0 | 2355 | 0.1208 | 0.9529 |
|
98 |
+
| 0.1959 | 30.99 | 2433 | 0.1189 | 0.9563 |
|
99 |
+
| 0.1946 | 32.0 | 2512 | 0.1106 | 0.9617 |
|
100 |
+
| 0.1777 | 32.99 | 2590 | 0.1048 | 0.9587 |
|
101 |
+
| 0.1895 | 34.0 | 2669 | 0.0965 | 0.9643 |
|
102 |
+
| 0.1779 | 34.99 | 2747 | 0.1081 | 0.9623 |
|
103 |
+
| 0.1717 | 36.0 | 2826 | 0.1155 | 0.9590 |
|
104 |
+
| 0.1715 | 36.99 | 2904 | 0.1006 | 0.9630 |
|
105 |
+
| 0.1748 | 38.0 | 2983 | 0.0894 | 0.9695 |
|
106 |
+
| 0.1677 | 38.99 | 3061 | 0.1037 | 0.9639 |
|
107 |
+
| 0.1723 | 40.0 | 3140 | 0.1009 | 0.9637 |
|
108 |
+
| 0.1552 | 40.99 | 3218 | 0.0867 | 0.9697 |
|
109 |
+
| 0.1658 | 42.0 | 3297 | 0.0860 | 0.9702 |
|
110 |
+
| 0.1531 | 42.99 | 3375 | 0.0921 | 0.9673 |
|
111 |
+
| 0.1593 | 44.0 | 3454 | 0.0941 | 0.9646 |
|
112 |
+
| 0.1568 | 44.99 | 3532 | 0.0879 | 0.9686 |
|
113 |
+
| 0.1621 | 46.0 | 3611 | 0.0929 | 0.9693 |
|
114 |
+
| 0.1602 | 46.99 | 3689 | 0.0777 | 0.9744 |
|
115 |
+
| 0.1397 | 48.0 | 3768 | 0.0821 | 0.9733 |
|
116 |
+
| 0.1475 | 48.99 | 3846 | 0.0810 | 0.9711 |
|
117 |
+
| 0.1452 | 50.0 | 3925 | 0.0943 | 0.9697 |
|
118 |
+
| 0.148 | 50.99 | 4003 | 0.0943 | 0.9704 |
|
119 |
+
| 0.1392 | 52.0 | 4082 | 0.0869 | 0.9695 |
|
120 |
+
| 0.1389 | 52.99 | 4160 | 0.0876 | 0.9738 |
|
121 |
+
| 0.1295 | 54.0 | 4239 | 0.0716 | 0.9749 |
|
122 |
+
| 0.1394 | 54.99 | 4317 | 0.0760 | 0.9751 |
|
123 |
+
| 0.1354 | 56.0 | 4396 | 0.0771 | 0.9726 |
|
124 |
+
| 0.1303 | 56.99 | 4474 | 0.0738 | 0.9738 |
|
125 |
+
| 0.1274 | 58.0 | 4553 | 0.0834 | 0.9724 |
|
126 |
+
| 0.1276 | 58.99 | 4631 | 0.0801 | 0.9747 |
|
127 |
+
| 0.1372 | 60.0 | 4710 | 0.0667 | 0.9762 |
|
128 |
+
| 0.1417 | 60.99 | 4788 | 0.0747 | 0.9738 |
|
129 |
+
| 0.1249 | 62.0 | 4867 | 0.0735 | 0.9744 |
|
130 |
+
| 0.1212 | 62.99 | 4945 | 0.0665 | 0.9780 |
|
131 |
+
| 0.1218 | 64.0 | 5024 | 0.0680 | 0.9771 |
|
132 |
+
| 0.1193 | 64.99 | 5102 | 0.0679 | 0.9760 |
|
133 |
+
| 0.1148 | 66.0 | 5181 | 0.0685 | 0.9774 |
|
134 |
+
| 0.1242 | 66.99 | 5259 | 0.0647 | 0.9800 |
|
135 |
+
| 0.1167 | 68.0 | 5338 | 0.0646 | 0.9783 |
|
136 |
+
| 0.117 | 68.99 | 5416 | 0.0763 | 0.9765 |
|
137 |
+
| 0.1153 | 70.0 | 5495 | 0.0720 | 0.9753 |
|
138 |
+
| 0.12 | 70.99 | 5573 | 0.0717 | 0.9771 |
|
139 |
+
| 0.1054 | 72.0 | 5652 | 0.0677 | 0.9767 |
|
140 |
+
| 0.1183 | 72.99 | 5730 | 0.0741 | 0.9756 |
|
141 |
+
| 0.1082 | 74.0 | 5809 | 0.0676 | 0.9787 |
|
142 |
+
| 0.1088 | 74.99 | 5887 | 0.0700 | 0.9751 |
|
143 |
+
| 0.1125 | 76.0 | 5966 | 0.0663 | 0.9785 |
|
144 |
+
| 0.1099 | 76.99 | 6044 | 0.0622 | 0.9789 |
|
145 |
+
| 0.1128 | 78.0 | 6123 | 0.0660 | 0.9794 |
|
146 |
+
| 0.1178 | 78.99 | 6201 | 0.0699 | 0.9780 |
|
147 |
+
| 0.1129 | 80.0 | 6280 | 0.0605 | 0.9794 |
|
148 |
+
| 0.1013 | 80.99 | 6358 | 0.0694 | 0.9778 |
|
149 |
+
| 0.1078 | 82.0 | 6437 | 0.0652 | 0.9783 |
|
150 |
+
| 0.0994 | 82.99 | 6515 | 0.0604 | 0.9812 |
|
151 |
+
| 0.1093 | 84.0 | 6594 | 0.0600 | 0.9805 |
|
152 |
+
| 0.1039 | 84.99 | 6672 | 0.0646 | 0.9787 |
|
153 |
+
| 0.0963 | 86.0 | 6751 | 0.0654 | 0.9789 |
|
154 |
+
| 0.1053 | 86.99 | 6829 | 0.0627 | 0.9803 |
|
155 |
+
| 0.0982 | 88.0 | 6908 | 0.0619 | 0.9800 |
|
156 |
+
| 0.0944 | 88.99 | 6986 | 0.0607 | 0.9796 |
|
157 |
+
| 0.0959 | 90.0 | 7065 | 0.0661 | 0.9800 |
|
158 |
+
| 0.101 | 90.99 | 7143 | 0.0642 | 0.9809 |
|
159 |
+
| 0.1095 | 92.0 | 7222 | 0.0607 | 0.9807 |
|
160 |
+
| 0.1079 | 92.99 | 7300 | 0.0610 | 0.9803 |
|
161 |
+
| 0.1153 | 94.0 | 7379 | 0.0632 | 0.9798 |
|
162 |
+
| 0.1022 | 94.99 | 7457 | 0.0618 | 0.9812 |
|
163 |
+
| 0.1079 | 96.0 | 7536 | 0.0606 | 0.9809 |
|
164 |
+
| 0.0942 | 96.99 | 7614 | 0.0612 | 0.9800 |
|
165 |
+
| 0.0927 | 98.0 | 7693 | 0.0598 | 0.9809 |
|
166 |
+
| 0.1032 | 98.99 | 7771 | 0.0604 | 0.9814 |
|
167 |
+
| 0.0925 | 99.36 | 7800 | 0.0603 | 0.9816 |
|
168 |
|
169 |
|
170 |
### Framework versions
|