Ellbendls commited on
Commit
e4265fa
·
1 Parent(s): 0e96364

Initial commit

Browse files
README.md CHANGED
@@ -16,7 +16,7 @@ model-index:
16
  type: PandaReachDense-v2
17
  metrics:
18
  - type: mean_reward
19
- value: -7.75 +/- 1.93
20
  name: mean_reward
21
  verified: false
22
  ---
 
16
  type: PandaReachDense-v2
17
  metrics:
18
  - type: mean_reward
19
+ value: -9.93 +/- 2.08
20
  name: mean_reward
21
  verified: false
22
  ---
a2c-PandaReachDense-v2.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:c0ca5b3e5cc116454ab5823f336a6f8739604ce0f5a607a51c2f619d1ec0b586
3
- size 108063
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:df9c249f4d3324a1670df2cd9935bda71ee22ba5e941826d31c60dc2461e4404
3
+ size 108075
a2c-PandaReachDense-v2/data CHANGED
@@ -4,9 +4,9 @@
4
  ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
- "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7bcaca017910>",
8
  "__abstractmethods__": "frozenset()",
9
- "_abc_impl": "<_abc._abc_data object at 0x7bcaca020480>"
10
  },
11
  "verbose": 1,
12
  "policy_kwargs": {
@@ -19,12 +19,12 @@
19
  "weight_decay": 0
20
  }
21
  },
22
- "num_timesteps": 2000000,
23
- "_total_timesteps": 2000000,
24
  "_num_timesteps_at_start": 0,
25
  "seed": null,
26
  "action_noise": null,
27
- "start_time": 1691048232684024790,
28
  "learning_rate": 0.0007,
29
  "tensorboard_log": null,
30
  "lr_schedule": {
@@ -33,10 +33,10 @@
33
  },
34
  "_last_obs": {
35
  ":type:": "<class 'collections.OrderedDict'>",
36
- ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAml3JPpxhKT0Sdhc/ml3JPpxhKT0Sdhc/ml3JPpxhKT0Sdhc/ml3JPpxhKT0Sdhc/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA8fimP8t/W78OVzE/p6C3P11tG76morC/GdSJP6HVc7/fUz+/lWrdPyoE4j5mDbk/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACaXck+nGEpPRJ2Fz9px9k7kEwQu9bzuzyaXck+nGEpPRJ2Fz9px9k7kEwQu9bzuzyaXck+nGEpPRJ2Fz9px9k7kEwQu9bzuzyaXck+nGEpPRJ2Fz9px9k7kEwQu9bzuzyUaA5LBEsGhpRoEnSUUpR1Lg==",
37
- "achieved_goal": "[[0.39329225 0.04135285 0.59164536]\n [0.39329225 0.04135285 0.59164536]\n [0.39329225 0.04135285 0.59164536]\n [0.39329225 0.04135285 0.59164536]]",
38
- "desired_goal": "[[ 1.3044721 -0.8574187 0.6927346 ]\n [ 1.4345902 -0.15178438 -1.3799636 ]\n [ 1.0767852 -0.95247847 -0.7473735 ]\n [ 1.7298151 0.44143802 1.4457214 ]]",
39
- "observation": "[[ 0.39329225 0.04135285 0.59164536 0.00664609 -0.00220183 0.02294342]\n [ 0.39329225 0.04135285 0.59164536 0.00664609 -0.00220183 0.02294342]\n [ 0.39329225 0.04135285 0.59164536 0.00664609 -0.00220183 0.02294342]\n [ 0.39329225 0.04135285 0.59164536 0.00664609 -0.00220183 0.02294342]]"
40
  },
41
  "_last_episode_starts": {
42
  ":type:": "<class 'numpy.ndarray'>",
@@ -44,9 +44,9 @@
44
  },
45
  "_last_original_obs": {
46
  ":type:": "<class 'collections.OrderedDict'>",
47
- ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA5K34PRerjD3vfFc+giULO9k2Cj5cQGU91iYLvvLiTT0pHJA+kCP9PfMsC76DN2w9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
48
  "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
49
- "desired_goal": "[[ 0.12142542 0.0686857 0.21043752]\n [ 0.00212321 0.13497485 0.05596958]\n [-0.13589033 0.05026526 0.28146484]\n [ 0.12360299 -0.13591366 0.05767013]]",
50
  "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
51
  },
52
  "_episode_num": 0,
@@ -56,13 +56,13 @@
56
  "_stats_window_size": 100,
57
  "ep_info_buffer": {
58
  ":type:": "<class 'collections.deque'>",
59
- ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIUInrGFeMFcCUhpRSlIwBbJRLMowBdJRHQLZlDva11GN1fZQoaAZoCWgPQwgK+DWSBKEUwJSGlFKUaBVLMmgWR0C2ZO6kM1CPdX2UKGgGaAloD0MIQkEpWrkHGsCUhpRSlGgVSzJoFkdAtmTN6iTMaHV9lChoBmgJaA9DCFLVBFH3gRfAlIaUUpRoFUsyaBZHQLZkrSzgMtt1fZQoaAZoCWgPQwjAsPz5tlASwJSGlFKUaBVLMmgWR0C2ZYPHDJlrdX2UKGgGaAloD0MIJ4V5jzP9E8CUhpRSlGgVSzJoFkdAtmVjgR9PUXV9lChoBmgJaA9DCIPfhhivmQvAlIaUUpRoFUsyaBZHQLZlQq+8Gs51fZQoaAZoCWgPQwjXM4RjlvUgwJSGlFKUaBVLMmgWR0C2ZSHhjvuxdX2UKGgGaAloD0MIeedQhqpYFMCUhpRSlGgVSzJoFkdAtmYOtKZlWnV9lChoBmgJaA9DCNds5SX/AxbAlIaUUpRoFUsyaBZHQLZl7nJ1aGJ1fZQoaAZoCWgPQwiuZMdGIM4QwJSGlFKUaBVLMmgWR0C2Zc4msvIwdX2UKGgGaAloD0MI/WfNj78UCsCUhpRSlGgVSzJoFkdAtmWtV5rxiHV9lChoBmgJaA9DCIPcRZii/BfAlIaUUpRoFUsyaBZHQLZmhy7PIGR1fZQoaAZoCWgPQwjXh/VGrfgiwJSGlFKUaBVLMmgWR0C2ZmbVOKwZdX2UKGgGaAloD0MIb2dfeZCOGcCUhpRSlGgVSzJoFkdAtmZF8CxNZnV9lChoBmgJaA9DCLH4TWGlYiHAlIaUUpRoFUsyaBZHQLZmJSjQAuJ1fZQoaAZoCWgPQwg1DB8RU5IfwJSGlFKUaBVLMmgWR0C2ZvpkbxVidX2UKGgGaAloD0MIfbPNjekZFcCUhpRSlGgVSzJoFkdAtmbaDaoMrnV9lChoBmgJaA9DCIif/x681gvAlIaUUpRoFUsyaBZHQLZmuTV2A5J1fZQoaAZoCWgPQwizeLEwRF4XwJSGlFKUaBVLMmgWR0C2Zph0+1SgdX2UKGgGaAloD0MIkGYsms6OFsCUhpRSlGgVSzJoFkdAtmeI4MnZ03V9lChoBmgJaA9DCNtrQe+N4RPAlIaUUpRoFUsyaBZHQLZnaIf8uSR1fZQoaAZoCWgPQwhy3ZTyWtkRwJSGlFKUaBVLMmgWR0C2Z0gl0HQhdX2UKGgGaAloD0MI+grSjEV7IMCUhpRSlGgVSzJoFkdAtmcnVz6rNnV9lChoBmgJaA9DCHeiJCTSxhDAlIaUUpRoFUsyaBZHQLZn/8XvYvp1fZQoaAZoCWgPQwj61RwgmBMRwJSGlFKUaBVLMmgWR0C2Z9+MMqjKdX2UKGgGaAloD0MIlG3gDtRJE8CUhpRSlGgVSzJoFkdAtme+t/4Ir3V9lChoBmgJaA9DCEIkQ46tBxPAlIaUUpRoFUsyaBZHQLZnnfdAPd51fZQoaAZoCWgPQwjX3TzVITcVwJSGlFKUaBVLMmgWR0C2aHV8CxNZdX2UKGgGaAloD0MI6L8Hr10qEMCUhpRSlGgVSzJoFkdAtmhVKbrkbXV9lChoBmgJaA9DCHuFBfcDDhzAlIaUUpRoFUsyaBZHQLZoNEi+tbN1fZQoaAZoCWgPQwjBG9KowFkawJSGlFKUaBVLMmgWR0C2aBOVgQYldX2UKGgGaAloD0MIgoyACkcAF8CUhpRSlGgVSzJoFkdAtmj8Bfa6BnV9lChoBmgJaA9DCDbLZaNz3grAlIaUUpRoFUsyaBZHQLZo3BbOeJ51fZQoaAZoCWgPQwjOVIhH4pUTwJSGlFKUaBVLMmgWR0C2aLs495hSdX2UKGgGaAloD0MI6IcRwqOtFMCUhpRSlGgVSzJoFkdAtmiadpZfUnV9lChoBmgJaA9DCAGjy5vDhRTAlIaUUpRoFUsyaBZHQLZpbzd1uBN1fZQoaAZoCWgPQwijA5Kwb6cXwJSGlFKUaBVLMmgWR0C2aU7fHggpdX2UKGgGaAloD0MIbD6uDRUTFcCUhpRSlGgVSzJoFkdAtmkuDRMN+nV9lChoBmgJaA9DCBEY6xuY/BHAlIaUUpRoFUsyaBZHQLZpDVdX1ap1fZQoaAZoCWgPQwjvx+2XT0YTwJSGlFKUaBVLMmgWR0C2affwqiGndX2UKGgGaAloD0MIdH6K48ArBcCUhpRSlGgVSzJoFkdAtmnYF3Y+S3V9lChoBmgJaA9DCLGmsijsgh7AlIaUUpRoFUsyaBZHQLZpt1VHWjJ1fZQoaAZoCWgPQwhVouwt5bwYwJSGlFKUaBVLMmgWR0C2aZa7ROUMdX2UKGgGaAloD0MIoMTnTrB/EcCUhpRSlGgVSzJoFkdAtmp2dQO4G3V9lChoBmgJaA9DCC0FpP0PkBHAlIaUUpRoFUsyaBZHQLZqVkpZwGZ1fZQoaAZoCWgPQwh+calKW3wawJSGlFKUaBVLMmgWR0C2ajVtTDO1dX2UKGgGaAloD0MI7kCd8uhGIMCUhpRSlGgVSzJoFkdAtmoUpe/pMnV9lChoBmgJaA9DCBR2UfTAFyLAlIaUUpRoFUsyaBZHQLZq7r6tT1l1fZQoaAZoCWgPQwiIhVrTvOMcwJSGlFKUaBVLMmgWR0C2as6Zc9nsdX2UKGgGaAloD0MILlbUYBq2FsCUhpRSlGgVSzJoFkdAtmqtwNsnA3V9lChoBmgJaA9DCAd+VMN+vxfAlIaUUpRoFUsyaBZHQLZqjQOnVG11fZQoaAZoCWgPQwg7GRwlr14SwJSGlFKUaBVLMmgWR0C2a3ewTufFdX2UKGgGaAloD0MIEHnL1Y8NH8CUhpRSlGgVSzJoFkdAtmtXzQNTcnV9lChoBmgJaA9DCLCvdakRGhTAlIaUUpRoFUsyaBZHQLZrNv0AcT91fZQoaAZoCWgPQwjeHRmrza8QwJSGlFKUaBVLMmgWR0C2axZE2HcldX2UKGgGaAloD0MIBb8NMV6DHMCUhpRSlGgVSzJoFkdAtmvkZzgdfnV9lChoBmgJaA9DCIfFqGvtvRjAlIaUUpRoFUsyaBZHQLZrxCTlkpZ1fZQoaAZoCWgPQwiufmySH2EUwJSGlFKUaBVLMmgWR0C2a6NQ40djdX2UKGgGaAloD0MIkiOdgZFHFcCUhpRSlGgVSzJoFkdAtmuCjgydnXV9lChoBmgJaA9DCAPso1NXfhLAlIaUUpRoFUsyaBZHQLZsXmKZUkx1fZQoaAZoCWgPQwgyryMO2eATwJSGlFKUaBVLMmgWR0C2bD4QJ5VwdX2UKGgGaAloD0MIWeAruvXqF8CUhpRSlGgVSzJoFkdAtmwdRceKbnV9lChoBmgJaA9DCLWoT3KH7RrAlIaUUpRoFUsyaBZHQLZr/JIDoyN1fZQoaAZoCWgPQwh3gv3XubkTwJSGlFKUaBVLMmgWR0C2bNcTFl06dX2UKGgGaAloD0MIQkP/BBfLGcCUhpRSlGgVSzJoFkdAtmy2v5gw5HV9lChoBmgJaA9DCLUy4Zf6ASDAlIaUUpRoFUsyaBZHQLZslevpyIZ1fZQoaAZoCWgPQwjtKM5RR3cTwJSGlFKUaBVLMmgWR0C2bHUofCAMdX2UKGgGaAloD0MIc9cS8kH/FsCUhpRSlGgVSzJoFkdAtm1Lyz5XVHV9lChoBmgJaA9DCEzirIiaeBjAlIaUUpRoFUsyaBZHQLZtK4OMERt1fZQoaAZoCWgPQwifIRyz7GkdwJSGlFKUaBVLMmgWR0C2bQqrzXjEdX2UKGgGaAloD0MIUg37PbHOFMCUhpRSlGgVSzJoFkdAtmzp7D2rXHV9lChoBmgJaA9DCNIA3gIJShXAlIaUUpRoFUsyaBZHQLZtwUIcBEN1fZQoaAZoCWgPQwihv9AjRr8VwJSGlFKUaBVLMmgWR0C2baD2rXDndX2UKGgGaAloD0MINlfNc0QuKMCUhpRSlGgVSzJoFkdAtm2AGHHmzXV9lChoBmgJaA9DCF5jl6jeihTAlIaUUpRoFUsyaBZHQLZtX18b70p1fZQoaAZoCWgPQwg7GRwlr54ewJSGlFKUaBVLMmgWR0C2bjgs9SuRdX2UKGgGaAloD0MIH54lyAjgIcCUhpRSlGgVSzJoFkdAtm4X36AOKHV9lChoBmgJaA9DCIhM+RBUXR7AlIaUUpRoFUsyaBZHQLZt929L6DZ1fZQoaAZoCWgPQwijyjDuBiEYwJSGlFKUaBVLMmgWR0C2bdacNH6NdX2UKGgGaAloD0MImrUUkPbfC8CUhpRSlGgVSzJoFkdAtm7zps41g3V9lChoBmgJaA9DCGXkLOxpVxfAlIaUUpRoFUsyaBZHQLZu089wFTx1fZQoaAZoCWgPQwj0biwoDGoWwJSGlFKUaBVLMmgWR0C2brOj/MnrdX2UKGgGaAloD0MIZf1mYrrgHMCUhpRSlGgVSzJoFkdAtm6TFglWwXV9lChoBmgJaA9DCOZbH9YbJRLAlIaUUpRoFUsyaBZHQLZvucpb2UV1fZQoaAZoCWgPQwgGS3UBL9MYwJSGlFKUaBVLMmgWR0C2b5nDvVmSdX2UKGgGaAloD0MI3+F2aFiUIcCUhpRSlGgVSzJoFkdAtm95RCQcP3V9lChoBmgJaA9DCBy0Vx8PTRjAlIaUUpRoFUsyaBZHQLZvWL0jC551fZQoaAZoCWgPQwgJwap6+X0WwJSGlFKUaBVLMmgWR0C2cHZIlMRIdX2UKGgGaAloD0MIc7hWe9j7HsCUhpRSlGgVSzJoFkdAtnBWb5M10nV9lChoBmgJaA9DCN/7G7RXPxjAlIaUUpRoFUsyaBZHQLZwNlsxfv51fZQoaAZoCWgPQwjOwTOhSaIXwJSGlFKUaBVLMmgWR0C2cBX27FsIdX2UKGgGaAloD0MIeCefHtsCIMCUhpRSlGgVSzJoFkdAtnE5ODaoM3V9lChoBmgJaA9DCE7udygKxBfAlIaUUpRoFUsyaBZHQLZxGUoKD011fZQoaAZoCWgPQwiWBn5Uw/4XwJSGlFKUaBVLMmgWR0C2cPjd1uBMdX2UKGgGaAloD0MI2Lyqs1ogIcCUhpRSlGgVSzJoFkdAtnDYiUxEfHV9lChoBmgJaA9DCH/4+e/Bmx/AlIaUUpRoFUsyaBZHQLZx7vZyuIR1fZQoaAZoCWgPQwi+ZrlsdO4ZwJSGlFKUaBVLMmgWR0C2cc6yv9tNdX2UKGgGaAloD0MI8KKvIM0IFsCUhpRSlGgVSzJoFkdAtnGt0gbIcXV9lChoBmgJaA9DCHAJwD+l0iLAlIaUUpRoFUsyaBZHQLZxjSUC7sh1ZS4="
60
  },
61
  "ep_success_buffer": {
62
  ":type:": "<class 'collections.deque'>",
63
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
64
  },
65
- "_n_updates": 100000,
66
  "n_steps": 5,
67
  "gamma": 0.99,
68
  "gae_lambda": 1.0,
 
4
  ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f8a1b02db40>",
8
  "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc._abc_data object at 0x7f8a1b025700>"
10
  },
11
  "verbose": 1,
12
  "policy_kwargs": {
 
19
  "weight_decay": 0
20
  }
21
  },
22
+ "num_timesteps": 3000000,
23
+ "_total_timesteps": 3000000,
24
  "_num_timesteps_at_start": 0,
25
  "seed": null,
26
  "action_noise": null,
27
+ "start_time": 1691193949728094523,
28
  "learning_rate": 0.0007,
29
  "tensorboard_log": null,
30
  "lr_schedule": {
 
33
  },
34
  "_last_obs": {
35
  ":type:": "<class 'collections.OrderedDict'>",
36
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAMx/jPlHrdb26SUM/Mx/jPlHrdb26SUM/Mx/jPlHrdb26SUM/Mx/jPlHrdb26SUM/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA8xeSPz9ALz+bliS/dn+zP7bwuT+FdJe/xlvIPzHpYz+03R0/HM8EvjY2SL5QLgi+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAAzH+M+Uet1vbpJQz/ae5g8woFuvCm4hDwzH+M+Uet1vbpJQz/ae5g8woFuvCm4hDwzH+M+Uet1vbpJQz/ae5g8woFuvCm4hDwzH+M+Uet1vbpJQz/ae5g8woFuvCm4hDyUaA5LBEsGhpRoEnSUUpR1Lg==",
37
+ "achieved_goal": "[[ 0.4435974 -0.06003887 0.7628437 ]\n [ 0.4435974 -0.06003887 0.7628437 ]\n [ 0.4435974 -0.06003887 0.7628437 ]\n [ 0.4435974 -0.06003887 0.7628437 ]]",
38
+ "desired_goal": "[[ 1.1413559 0.68457407 -0.64292306]\n [ 1.4023273 1.4526584 -1.1832434 ]\n [ 1.5653007 0.89027697 0.6166642 ]\n [-0.12969631 -0.1955193 -0.13298917]]",
39
+ "observation": "[[ 0.4435974 -0.06003887 0.7628437 0.01861374 -0.0145573 0.0162011 ]\n [ 0.4435974 -0.06003887 0.7628437 0.01861374 -0.0145573 0.0162011 ]\n [ 0.4435974 -0.06003887 0.7628437 0.01861374 -0.0145573 0.0162011 ]\n [ 0.4435974 -0.06003887 0.7628437 0.01861374 -0.0145573 0.0162011 ]]"
40
  },
41
  "_last_episode_starts": {
42
  ":type:": "<class 'numpy.ndarray'>",
 
44
  },
45
  "_last_original_obs": {
46
  ":type:": "<class 'collections.OrderedDict'>",
47
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAtYCwPVwMET4X4nw+y9osPFxftTw9s449lOQCvgCGAj5ixiU9qBqQPF+7hr1BFIc9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
48
  "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
49
+ "desired_goal": "[[ 0.08618299 0.14164871 0.24695621]\n [ 0.01055021 0.0221402 0.06967781]\n [-0.12782508 0.1274643 0.0404724 ]\n [ 0.01759084 -0.06578707 0.0659566 ]]",
50
  "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
51
  },
52
  "_episode_num": 0,
 
56
  "_stats_window_size": 100,
57
  "ep_info_buffer": {
58
  ":type:": "<class 'collections.deque'>",
59
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIbmx2pPo+HMCUhpRSlIwBbJRLMowBdJRHQMEViO5BkZt1fZQoaAZoCWgPQwhO8iN+xaodwJSGlFKUaBVLMmgWR0DBFXisuFpPdX2UKGgGaAloD0MI4jrGFRcXGsCUhpRSlGgVSzJoFkdAwRVoy2x6fXV9lChoBmgJaA9DCOJZgoyASiDAlIaUUpRoFUsyaBZHQMEVWQh4dIZ1fZQoaAZoCWgPQwiC5QgZyCMVwJSGlFKUaBVLMmgWR0DBFcP9NvfkdX2UKGgGaAloD0MIe7yQDg+5I8CUhpRSlGgVSzJoFkdAwRWzrs0HhXV9lChoBmgJaA9DCLezrzxIfxbAlIaUUpRoFUsyaBZHQMEVo82rGR51fZQoaAZoCWgPQwhkrgyqDZYhwJSGlFKUaBVLMmgWR0DBFZQL3K0VdX2UKGgGaAloD0MIrB3FOerIHcCUhpRSlGgVSzJoFkdAwRYD4qwyI3V9lChoBmgJaA9DCDgu46YGKibAlIaUUpRoFUsyaBZHQMEV84h+vyN1fZQoaAZoCWgPQwgBMnTsoKIcwJSGlFKUaBVLMmgWR0DBFeOoLofTdX2UKGgGaAloD0MIJZF9kGVhKMCUhpRSlGgVSzJoFkdAwRXT6XSjQHV9lChoBmgJaA9DCIy5awn5QCDAlIaUUpRoFUsyaBZHQMEWPSyMUAV1fZQoaAZoCWgPQwh2/1iIDtEYwJSGlFKUaBVLMmgWR0DBFizQ1JlKdX2UKGgGaAloD0MIL/oK0ozVFsCUhpRSlGgVSzJoFkdAwRYc6PsAvXV9lChoBmgJaA9DCL06x4DsZRrAlIaUUpRoFUsyaBZHQMEWDSR8twt1fZQoaAZoCWgPQwgW+fVDbOAbwJSGlFKUaBVLMmgWR0DBFnhMQEpzdX2UKGgGaAloD0MI+WhxxjCHHcCUhpRSlGgVSzJoFkdAwRZn+GXXy3V9lChoBmgJaA9DCCxjQzf7kxzAlIaUUpRoFUsyaBZHQMEWWBa9sad1fZQoaAZoCWgPQwhClgUTf8wowJSGlFKUaBVLMmgWR0DBFkhUBGQTdX2UKGgGaAloD0MIkj1CzZCaF8CUhpRSlGgVSzJoFkdAwRa0Bg/kenV9lChoBmgJaA9DCO+OjNXmNyjAlIaUUpRoFUsyaBZHQMEWo9nTRY11fZQoaAZoCWgPQwjyzqEMVWEcwJSGlFKUaBVLMmgWR0DBFpQmPYFrdX2UKGgGaAloD0MIDvPlBdhXGMCUhpRSlGgVSzJoFkdAwRaEZ0CA+nV9lChoBmgJaA9DCF9gVijSzRLAlIaUUpRoFUsyaBZHQMEW8BSLqD91fZQoaAZoCWgPQwiSzVXzHAEhwJSGlFKUaBVLMmgWR0DBFt+9vjwQdX2UKGgGaAloD0MIRRMoYhETHsCUhpRSlGgVSzJoFkdAwRbP3Gn4wnV9lChoBmgJaA9DCLx1/u2y3x3AlIaUUpRoFUsyaBZHQMEWwB5HEuR1fZQoaAZoCWgPQwghyEEJM+0dwJSGlFKUaBVLMmgWR0DBFyuKdhAodX2UKGgGaAloD0MI4o+iztxjJcCUhpRSlGgVSzJoFkdAwRcbPPcBVHV9lChoBmgJaA9DCBZu+UhKGhPAlIaUUpRoFUsyaBZHQMEXC3JYDDF1fZQoaAZoCWgPQwinzTgNUXUdwJSGlFKUaBVLMmgWR0DBFvus3hn8dX2UKGgGaAloD0MIwY2ULZJmJcCUhpRSlGgVSzJoFkdAwRdmH6/IsHV9lChoBmgJaA9DCP3c0JSdrhXAlIaUUpRoFUsyaBZHQMEXVcKXv6V1fZQoaAZoCWgPQwgFw7mGGfogwJSGlFKUaBVLMmgWR0DBF0XcrRShdX2UKGgGaAloD0MIH0yKj08AI8CUhpRSlGgVSzJoFkdAwRc2HZbpvHV9lChoBmgJaA9DCAAapUv/QiPAlIaUUpRoFUsyaBZHQMEXoG34Kx91fZQoaAZoCWgPQwhTXiuhu0QdwJSGlFKUaBVLMmgWR0DBF5ATIvJzdX2UKGgGaAloD0MIGcdI9gg1IcCUhpRSlGgVSzJoFkdAwReALHdXT3V9lChoBmgJaA9DCAd5PZgU1yLAlIaUUpRoFUsyaBZHQMEXcGh/RVp1fZQoaAZoCWgPQwiLi6NyE0UXwJSGlFKUaBVLMmgWR0DBF9wdlum8dX2UKGgGaAloD0MIYd9OIsIvHcCUhpRSlGgVSzJoFkdAwRfLwhnrZHV9lChoBmgJaA9DCLmI78SsFxjAlIaUUpRoFUsyaBZHQMEXu9v863l1fZQoaAZoCWgPQwgct5ifG/IgwJSGlFKUaBVLMmgWR0DBF6wY3vQXdX2UKGgGaAloD0MI9gfKbfveF8CUhpRSlGgVSzJoFkdAwRgWDeTFEXV9lChoBmgJaA9DCHoZxXJLeyHAlIaUUpRoFUsyaBZHQMEYBbK7qY91fZQoaAZoCWgPQwivCtRi8BAjwJSGlFKUaBVLMmgWR0DBF/XHHWBjdX2UKGgGaAloD0MIhqktdZCnHcCUhpRSlGgVSzJoFkdAwRfl+TeO43V9lChoBmgJaA9DCOF5qdiYpxPAlIaUUpRoFUsyaBZHQMEYTcDr7fp1fZQoaAZoCWgPQwh5dvnWh9UQwJSGlFKUaBVLMmgWR0DBGD1nXd0rdX2UKGgGaAloD0MIGTvhJTj1GMCUhpRSlGgVSzJoFkdAwRgtgLqlg3V9lChoBmgJaA9DCBTRr62fLijAlIaUUpRoFUsyaBZHQMEYHcpb2UV1fZQoaAZoCWgPQwgAkX77OtAkwJSGlFKUaBVLMmgWR0DBGIk45tFbdX2UKGgGaAloD0MIQ6uTMxTXE8CUhpRSlGgVSzJoFkdAwRh433Hq/3V9lChoBmgJaA9DCNBk/zwNaBrAlIaUUpRoFUsyaBZHQMEYaPjGT9t1fZQoaAZoCWgPQwhiE5m5wHUYwJSGlFKUaBVLMmgWR0DBGFk1CPZJdX2UKGgGaAloD0MIAg6hSs3+G8CUhpRSlGgVSzJoFkdAwRjBc6/7BXV9lChoBmgJaA9DCAh3Z+22OyDAlIaUUpRoFUsyaBZHQMEYsRbjcVR1fZQoaAZoCWgPQwj2lQfpKZohwJSGlFKUaBVLMmgWR0DBGKExh2GJdX2UKGgGaAloD0MISRCugEJNH8CUhpRSlGgVSzJoFkdAwRiRcoH9nHV9lChoBmgJaA9DCHREvkup+xnAlIaUUpRoFUsyaBZHQMEY/OoHcDd1fZQoaAZoCWgPQwhVE0TdB+AewJSGlFKUaBVLMmgWR0DBGOyPbO/tdX2UKGgGaAloD0MI2nBYGvhxGsCUhpRSlGgVSzJoFkdAwRjcqjJuEXV9lChoBmgJaA9DCCEDeXb5VhvAlIaUUpRoFUsyaBZHQMEYzOSGJvZ1fZQoaAZoCWgPQwiemssNhmoZwJSGlFKUaBVLMmgWR0DBGTaH0se5dX2UKGgGaAloD0MISMMpc/OtH8CUhpRSlGgVSzJoFkdAwRkmLS/j83V9lChoBmgJaA9DCIiCGVOwhhnAlIaUUpRoFUsyaBZHQMEZFkytV7x1fZQoaAZoCWgPQwg/dEF9y6wZwJSGlFKUaBVLMmgWR0DBGQaJ2t+1dX2UKGgGaAloD0MItY0/UdmYIsCUhpRSlGgVSzJoFkdAwRl7dEb5unV9lChoBmgJaA9DCJg1scBXDCrAlIaUUpRoFUsyaBZHQMEZa0kv9Lp1fZQoaAZoCWgPQwjxLEFGQNUfwJSGlFKUaBVLMmgWR0DBGVuN3np0dX2UKGgGaAloD0MIOWItPgUAFMCUhpRSlGgVSzJoFkdAwRlL+YtxuXV9lChoBmgJaA9DCHQkl/+QHhvAlIaUUpRoFUsyaBZHQMEZ3JF9a2Z1fZQoaAZoCWgPQwhMjGX6JSIUwJSGlFKUaBVLMmgWR0DBGcxoh6jWdX2UKGgGaAloD0MINwAbECHGJ8CUhpRSlGgVSzJoFkdAwRm8t8NQTHV9lChoBmgJaA9DCIdrtYe98BrAlIaUUpRoFUsyaBZHQMEZrSlnAZd1fZQoaAZoCWgPQwgQ641aYZopwJSGlFKUaBVLMmgWR0DBGj7rcCYDdX2UKGgGaAloD0MIpBmLprNTGcCUhpRSlGgVSzJoFkdAwRouvXbudHV9lChoBmgJaA9DCK38MhgjIiTAlIaUUpRoFUsyaBZHQMEaHwUpNK11fZQoaAZoCWgPQwiXAz3UtpEdwJSGlFKUaBVLMmgWR0DBGg9wR5C4dX2UKGgGaAloD0MI/cHAc+9BKMCUhpRSlGgVSzJoFkdAwRqil54W13V9lChoBmgJaA9DCCmWW1oNqRfAlIaUUpRoFUsyaBZHQMEaknc+JP91fZQoaAZoCWgPQwgGgZVDi+wcwJSGlFKUaBVLMmgWR0DBGoLL6k6+dX2UKGgGaAloD0MIm+JxUS3aKcCUhpRSlGgVSzJoFkdAwRpzRQaaTnV9lChoBmgJaA9DCP6d7dEbXiDAlIaUUpRoFUsyaBZHQMEbC/ywwCd1fZQoaAZoCWgPQwjNzqJ3KrAlwJSGlFKUaBVLMmgWR0DBGvvSKFZgdX2UKGgGaAloD0MI2V2gpMDyGMCUhpRSlGgVSzJoFkdAwRrsHTqjanV9lChoBmgJaA9DCBxEa0WbAyvAlIaUUpRoFUsyaBZHQMEa3JHZsbh1fZQoaAZoCWgPQwgv/UtSmcIWwJSGlFKUaBVLMmgWR0DBG26X6ZYxdX2UKGgGaAloD0MIKlPMQdBpJMCUhpRSlGgVSzJoFkdAwRteSIP9UHV9lChoBmgJaA9DCOutga0SHCDAlIaUUpRoFUsyaBZHQMEbTmZ/kNp1fZQoaAZoCWgPQwiH+IctPboWwJSGlFKUaBVLMmgWR0DBGz6eyzHCdX2UKGgGaAloD0MI0egOYmfKIsCUhpRSlGgVSzJoFkdAwRupovi97HV9lChoBmgJaA9DCAnE6/oF6yrAlIaUUpRoFUsyaBZHQMEbmUaAFxJ1fZQoaAZoCWgPQwj2fThIiGImwJSGlFKUaBVLMmgWR0DBG4lh9b5edX2UKGgGaAloD0MII59XPPWYIMCUhpRSlGgVSzJoFkdAwRt5nK4hEHV9lChoBmgJaA9DCLBz02acTiLAlIaUUpRoFUsyaBZHQMEb4jMFEAp1fZQoaAZoCWgPQwil2qfjMfMawJSGlFKUaBVLMmgWR0DBG9HeUILPdX2UKGgGaAloD0MISKRt/IlqGMCUhpRSlGgVSzJoFkdAwRvB9uP3jHV9lChoBmgJaA9DCDcawFsg+SDAlIaUUpRoFUsyaBZHQMEbsjRD1Gt1ZS4="
60
  },
61
  "ep_success_buffer": {
62
  ":type:": "<class 'collections.deque'>",
63
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
64
  },
65
+ "_n_updates": 150000,
66
  "n_steps": 5,
67
  "gamma": 0.99,
68
  "gae_lambda": 1.0,
a2c-PandaReachDense-v2/policy.optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:3d9c767ed2d6d43d307c2e0df5bfd5ba0b618ac62c08c977ebe2e9978bca400a
3
  size 44734
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:01cdef425cce50cc3a007d3d90368a6f90aaaa8f9d48b98a51ba86a0a76d9106
3
  size 44734
a2c-PandaReachDense-v2/policy.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:b6c318646f97a275b0ed7d55cc7fd04389718fa113bb2d71e6ff26cd8cde7951
3
  size 46014
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:df4793b2b92162bbefc76a10d7f2b29a07c988b20eb42274b37cf77427f08c18
3
  size 46014
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7bcaca017910>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7bcaca020480>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1691048232684024790, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAml3JPpxhKT0Sdhc/ml3JPpxhKT0Sdhc/ml3JPpxhKT0Sdhc/ml3JPpxhKT0Sdhc/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA8fimP8t/W78OVzE/p6C3P11tG76morC/GdSJP6HVc7/fUz+/lWrdPyoE4j5mDbk/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACaXck+nGEpPRJ2Fz9px9k7kEwQu9bzuzyaXck+nGEpPRJ2Fz9px9k7kEwQu9bzuzyaXck+nGEpPRJ2Fz9px9k7kEwQu9bzuzyaXck+nGEpPRJ2Fz9px9k7kEwQu9bzuzyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.39329225 0.04135285 0.59164536]\n [0.39329225 0.04135285 0.59164536]\n [0.39329225 0.04135285 0.59164536]\n [0.39329225 0.04135285 0.59164536]]", "desired_goal": "[[ 1.3044721 -0.8574187 0.6927346 ]\n [ 1.4345902 -0.15178438 -1.3799636 ]\n [ 1.0767852 -0.95247847 -0.7473735 ]\n [ 1.7298151 0.44143802 1.4457214 ]]", "observation": "[[ 0.39329225 0.04135285 0.59164536 0.00664609 -0.00220183 0.02294342]\n [ 0.39329225 0.04135285 0.59164536 0.00664609 -0.00220183 0.02294342]\n [ 0.39329225 0.04135285 0.59164536 0.00664609 -0.00220183 0.02294342]\n [ 0.39329225 0.04135285 0.59164536 0.00664609 -0.00220183 0.02294342]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA5K34PRerjD3vfFc+giULO9k2Cj5cQGU91iYLvvLiTT0pHJA+kCP9PfMsC76DN2w9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.12142542 0.0686857 0.21043752]\n [ 0.00212321 0.13497485 0.05596958]\n [-0.13589033 0.05026526 0.28146484]\n [ 0.12360299 -0.13591366 0.05767013]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIUInrGFeMFcCUhpRSlIwBbJRLMowBdJRHQLZlDva11GN1fZQoaAZoCWgPQwgK+DWSBKEUwJSGlFKUaBVLMmgWR0C2ZO6kM1CPdX2UKGgGaAloD0MIQkEpWrkHGsCUhpRSlGgVSzJoFkdAtmTN6iTMaHV9lChoBmgJaA9DCFLVBFH3gRfAlIaUUpRoFUsyaBZHQLZkrSzgMtt1fZQoaAZoCWgPQwjAsPz5tlASwJSGlFKUaBVLMmgWR0C2ZYPHDJlrdX2UKGgGaAloD0MIJ4V5jzP9E8CUhpRSlGgVSzJoFkdAtmVjgR9PUXV9lChoBmgJaA9DCIPfhhivmQvAlIaUUpRoFUsyaBZHQLZlQq+8Gs51fZQoaAZoCWgPQwjXM4RjlvUgwJSGlFKUaBVLMmgWR0C2ZSHhjvuxdX2UKGgGaAloD0MIeedQhqpYFMCUhpRSlGgVSzJoFkdAtmYOtKZlWnV9lChoBmgJaA9DCNds5SX/AxbAlIaUUpRoFUsyaBZHQLZl7nJ1aGJ1fZQoaAZoCWgPQwiuZMdGIM4QwJSGlFKUaBVLMmgWR0C2Zc4msvIwdX2UKGgGaAloD0MI/WfNj78UCsCUhpRSlGgVSzJoFkdAtmWtV5rxiHV9lChoBmgJaA9DCIPcRZii/BfAlIaUUpRoFUsyaBZHQLZmhy7PIGR1fZQoaAZoCWgPQwjXh/VGrfgiwJSGlFKUaBVLMmgWR0C2ZmbVOKwZdX2UKGgGaAloD0MIb2dfeZCOGcCUhpRSlGgVSzJoFkdAtmZF8CxNZnV9lChoBmgJaA9DCLH4TWGlYiHAlIaUUpRoFUsyaBZHQLZmJSjQAuJ1fZQoaAZoCWgPQwg1DB8RU5IfwJSGlFKUaBVLMmgWR0C2ZvpkbxVidX2UKGgGaAloD0MIfbPNjekZFcCUhpRSlGgVSzJoFkdAtmbaDaoMrnV9lChoBmgJaA9DCIif/x681gvAlIaUUpRoFUsyaBZHQLZmuTV2A5J1fZQoaAZoCWgPQwizeLEwRF4XwJSGlFKUaBVLMmgWR0C2Zph0+1SgdX2UKGgGaAloD0MIkGYsms6OFsCUhpRSlGgVSzJoFkdAtmeI4MnZ03V9lChoBmgJaA9DCNtrQe+N4RPAlIaUUpRoFUsyaBZHQLZnaIf8uSR1fZQoaAZoCWgPQwhy3ZTyWtkRwJSGlFKUaBVLMmgWR0C2Z0gl0HQhdX2UKGgGaAloD0MI+grSjEV7IMCUhpRSlGgVSzJoFkdAtmcnVz6rNnV9lChoBmgJaA9DCHeiJCTSxhDAlIaUUpRoFUsyaBZHQLZn/8XvYvp1fZQoaAZoCWgPQwj61RwgmBMRwJSGlFKUaBVLMmgWR0C2Z9+MMqjKdX2UKGgGaAloD0MIlG3gDtRJE8CUhpRSlGgVSzJoFkdAtme+t/4Ir3V9lChoBmgJaA9DCEIkQ46tBxPAlIaUUpRoFUsyaBZHQLZnnfdAPd51fZQoaAZoCWgPQwjX3TzVITcVwJSGlFKUaBVLMmgWR0C2aHV8CxNZdX2UKGgGaAloD0MI6L8Hr10qEMCUhpRSlGgVSzJoFkdAtmhVKbrkbXV9lChoBmgJaA9DCHuFBfcDDhzAlIaUUpRoFUsyaBZHQLZoNEi+tbN1fZQoaAZoCWgPQwjBG9KowFkawJSGlFKUaBVLMmgWR0C2aBOVgQYldX2UKGgGaAloD0MIgoyACkcAF8CUhpRSlGgVSzJoFkdAtmj8Bfa6BnV9lChoBmgJaA9DCDbLZaNz3grAlIaUUpRoFUsyaBZHQLZo3BbOeJ51fZQoaAZoCWgPQwjOVIhH4pUTwJSGlFKUaBVLMmgWR0C2aLs495hSdX2UKGgGaAloD0MI6IcRwqOtFMCUhpRSlGgVSzJoFkdAtmiadpZfUnV9lChoBmgJaA9DCAGjy5vDhRTAlIaUUpRoFUsyaBZHQLZpbzd1uBN1fZQoaAZoCWgPQwijA5Kwb6cXwJSGlFKUaBVLMmgWR0C2aU7fHggpdX2UKGgGaAloD0MIbD6uDRUTFcCUhpRSlGgVSzJoFkdAtmkuDRMN+nV9lChoBmgJaA9DCBEY6xuY/BHAlIaUUpRoFUsyaBZHQLZpDVdX1ap1fZQoaAZoCWgPQwjvx+2XT0YTwJSGlFKUaBVLMmgWR0C2affwqiGndX2UKGgGaAloD0MIdH6K48ArBcCUhpRSlGgVSzJoFkdAtmnYF3Y+S3V9lChoBmgJaA9DCLGmsijsgh7AlIaUUpRoFUsyaBZHQLZpt1VHWjJ1fZQoaAZoCWgPQwhVouwt5bwYwJSGlFKUaBVLMmgWR0C2aZa7ROUMdX2UKGgGaAloD0MIoMTnTrB/EcCUhpRSlGgVSzJoFkdAtmp2dQO4G3V9lChoBmgJaA9DCC0FpP0PkBHAlIaUUpRoFUsyaBZHQLZqVkpZwGZ1fZQoaAZoCWgPQwh+calKW3wawJSGlFKUaBVLMmgWR0C2ajVtTDO1dX2UKGgGaAloD0MI7kCd8uhGIMCUhpRSlGgVSzJoFkdAtmoUpe/pMnV9lChoBmgJaA9DCBR2UfTAFyLAlIaUUpRoFUsyaBZHQLZq7r6tT1l1fZQoaAZoCWgPQwiIhVrTvOMcwJSGlFKUaBVLMmgWR0C2as6Zc9nsdX2UKGgGaAloD0MILlbUYBq2FsCUhpRSlGgVSzJoFkdAtmqtwNsnA3V9lChoBmgJaA9DCAd+VMN+vxfAlIaUUpRoFUsyaBZHQLZqjQOnVG11fZQoaAZoCWgPQwg7GRwlr14SwJSGlFKUaBVLMmgWR0C2a3ewTufFdX2UKGgGaAloD0MIEHnL1Y8NH8CUhpRSlGgVSzJoFkdAtmtXzQNTcnV9lChoBmgJaA9DCLCvdakRGhTAlIaUUpRoFUsyaBZHQLZrNv0AcT91fZQoaAZoCWgPQwjeHRmrza8QwJSGlFKUaBVLMmgWR0C2axZE2HcldX2UKGgGaAloD0MIBb8NMV6DHMCUhpRSlGgVSzJoFkdAtmvkZzgdfnV9lChoBmgJaA9DCIfFqGvtvRjAlIaUUpRoFUsyaBZHQLZrxCTlkpZ1fZQoaAZoCWgPQwiufmySH2EUwJSGlFKUaBVLMmgWR0C2a6NQ40djdX2UKGgGaAloD0MIkiOdgZFHFcCUhpRSlGgVSzJoFkdAtmuCjgydnXV9lChoBmgJaA9DCAPso1NXfhLAlIaUUpRoFUsyaBZHQLZsXmKZUkx1fZQoaAZoCWgPQwgyryMO2eATwJSGlFKUaBVLMmgWR0C2bD4QJ5VwdX2UKGgGaAloD0MIWeAruvXqF8CUhpRSlGgVSzJoFkdAtmwdRceKbnV9lChoBmgJaA9DCLWoT3KH7RrAlIaUUpRoFUsyaBZHQLZr/JIDoyN1fZQoaAZoCWgPQwh3gv3XubkTwJSGlFKUaBVLMmgWR0C2bNcTFl06dX2UKGgGaAloD0MIQkP/BBfLGcCUhpRSlGgVSzJoFkdAtmy2v5gw5HV9lChoBmgJaA9DCLUy4Zf6ASDAlIaUUpRoFUsyaBZHQLZslevpyIZ1fZQoaAZoCWgPQwjtKM5RR3cTwJSGlFKUaBVLMmgWR0C2bHUofCAMdX2UKGgGaAloD0MIc9cS8kH/FsCUhpRSlGgVSzJoFkdAtm1Lyz5XVHV9lChoBmgJaA9DCEzirIiaeBjAlIaUUpRoFUsyaBZHQLZtK4OMERt1fZQoaAZoCWgPQwifIRyz7GkdwJSGlFKUaBVLMmgWR0C2bQqrzXjEdX2UKGgGaAloD0MIUg37PbHOFMCUhpRSlGgVSzJoFkdAtmzp7D2rXHV9lChoBmgJaA9DCNIA3gIJShXAlIaUUpRoFUsyaBZHQLZtwUIcBEN1fZQoaAZoCWgPQwihv9AjRr8VwJSGlFKUaBVLMmgWR0C2baD2rXDndX2UKGgGaAloD0MINlfNc0QuKMCUhpRSlGgVSzJoFkdAtm2AGHHmzXV9lChoBmgJaA9DCF5jl6jeihTAlIaUUpRoFUsyaBZHQLZtX18b70p1fZQoaAZoCWgPQwg7GRwlr54ewJSGlFKUaBVLMmgWR0C2bjgs9SuRdX2UKGgGaAloD0MIH54lyAjgIcCUhpRSlGgVSzJoFkdAtm4X36AOKHV9lChoBmgJaA9DCIhM+RBUXR7AlIaUUpRoFUsyaBZHQLZt929L6DZ1fZQoaAZoCWgPQwijyjDuBiEYwJSGlFKUaBVLMmgWR0C2bdacNH6NdX2UKGgGaAloD0MImrUUkPbfC8CUhpRSlGgVSzJoFkdAtm7zps41g3V9lChoBmgJaA9DCGXkLOxpVxfAlIaUUpRoFUsyaBZHQLZu089wFTx1fZQoaAZoCWgPQwj0biwoDGoWwJSGlFKUaBVLMmgWR0C2brOj/MnrdX2UKGgGaAloD0MIZf1mYrrgHMCUhpRSlGgVSzJoFkdAtm6TFglWwXV9lChoBmgJaA9DCOZbH9YbJRLAlIaUUpRoFUsyaBZHQLZvucpb2UV1fZQoaAZoCWgPQwgGS3UBL9MYwJSGlFKUaBVLMmgWR0C2b5nDvVmSdX2UKGgGaAloD0MI3+F2aFiUIcCUhpRSlGgVSzJoFkdAtm95RCQcP3V9lChoBmgJaA9DCBy0Vx8PTRjAlIaUUpRoFUsyaBZHQLZvWL0jC551fZQoaAZoCWgPQwgJwap6+X0WwJSGlFKUaBVLMmgWR0C2cHZIlMRIdX2UKGgGaAloD0MIc7hWe9j7HsCUhpRSlGgVSzJoFkdAtnBWb5M10nV9lChoBmgJaA9DCN/7G7RXPxjAlIaUUpRoFUsyaBZHQLZwNlsxfv51fZQoaAZoCWgPQwjOwTOhSaIXwJSGlFKUaBVLMmgWR0C2cBX27FsIdX2UKGgGaAloD0MIeCefHtsCIMCUhpRSlGgVSzJoFkdAtnE5ODaoM3V9lChoBmgJaA9DCE7udygKxBfAlIaUUpRoFUsyaBZHQLZxGUoKD011fZQoaAZoCWgPQwiWBn5Uw/4XwJSGlFKUaBVLMmgWR0C2cPjd1uBMdX2UKGgGaAloD0MI2Lyqs1ogIcCUhpRSlGgVSzJoFkdAtnDYiUxEfHV9lChoBmgJaA9DCH/4+e/Bmx/AlIaUUpRoFUsyaBZHQLZx7vZyuIR1fZQoaAZoCWgPQwi+ZrlsdO4ZwJSGlFKUaBVLMmgWR0C2cc6yv9tNdX2UKGgGaAloD0MI8KKvIM0IFsCUhpRSlGgVSzJoFkdAtnGt0gbIcXV9lChoBmgJaA9DCHAJwD+l0iLAlIaUUpRoFUsyaBZHQLZxjSUC7sh1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 100000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f8a1b02db40>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f8a1b025700>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 3000000, "_total_timesteps": 3000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1691193949728094523, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAMx/jPlHrdb26SUM/Mx/jPlHrdb26SUM/Mx/jPlHrdb26SUM/Mx/jPlHrdb26SUM/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA8xeSPz9ALz+bliS/dn+zP7bwuT+FdJe/xlvIPzHpYz+03R0/HM8EvjY2SL5QLgi+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAAzH+M+Uet1vbpJQz/ae5g8woFuvCm4hDwzH+M+Uet1vbpJQz/ae5g8woFuvCm4hDwzH+M+Uet1vbpJQz/ae5g8woFuvCm4hDwzH+M+Uet1vbpJQz/ae5g8woFuvCm4hDyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.4435974 -0.06003887 0.7628437 ]\n [ 0.4435974 -0.06003887 0.7628437 ]\n [ 0.4435974 -0.06003887 0.7628437 ]\n [ 0.4435974 -0.06003887 0.7628437 ]]", "desired_goal": "[[ 1.1413559 0.68457407 -0.64292306]\n [ 1.4023273 1.4526584 -1.1832434 ]\n [ 1.5653007 0.89027697 0.6166642 ]\n [-0.12969631 -0.1955193 -0.13298917]]", "observation": "[[ 0.4435974 -0.06003887 0.7628437 0.01861374 -0.0145573 0.0162011 ]\n [ 0.4435974 -0.06003887 0.7628437 0.01861374 -0.0145573 0.0162011 ]\n [ 0.4435974 -0.06003887 0.7628437 0.01861374 -0.0145573 0.0162011 ]\n [ 0.4435974 -0.06003887 0.7628437 0.01861374 -0.0145573 0.0162011 ]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAtYCwPVwMET4X4nw+y9osPFxftTw9s449lOQCvgCGAj5ixiU9qBqQPF+7hr1BFIc9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.08618299 0.14164871 0.24695621]\n [ 0.01055021 0.0221402 0.06967781]\n [-0.12782508 0.1274643 0.0404724 ]\n [ 0.01759084 -0.06578707 0.0659566 ]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIbmx2pPo+HMCUhpRSlIwBbJRLMowBdJRHQMEViO5BkZt1fZQoaAZoCWgPQwhO8iN+xaodwJSGlFKUaBVLMmgWR0DBFXisuFpPdX2UKGgGaAloD0MI4jrGFRcXGsCUhpRSlGgVSzJoFkdAwRVoy2x6fXV9lChoBmgJaA9DCOJZgoyASiDAlIaUUpRoFUsyaBZHQMEVWQh4dIZ1fZQoaAZoCWgPQwiC5QgZyCMVwJSGlFKUaBVLMmgWR0DBFcP9NvfkdX2UKGgGaAloD0MIe7yQDg+5I8CUhpRSlGgVSzJoFkdAwRWzrs0HhXV9lChoBmgJaA9DCLezrzxIfxbAlIaUUpRoFUsyaBZHQMEVo82rGR51fZQoaAZoCWgPQwhkrgyqDZYhwJSGlFKUaBVLMmgWR0DBFZQL3K0VdX2UKGgGaAloD0MIrB3FOerIHcCUhpRSlGgVSzJoFkdAwRYD4qwyI3V9lChoBmgJaA9DCDgu46YGKibAlIaUUpRoFUsyaBZHQMEV84h+vyN1fZQoaAZoCWgPQwgBMnTsoKIcwJSGlFKUaBVLMmgWR0DBFeOoLofTdX2UKGgGaAloD0MIJZF9kGVhKMCUhpRSlGgVSzJoFkdAwRXT6XSjQHV9lChoBmgJaA9DCIy5awn5QCDAlIaUUpRoFUsyaBZHQMEWPSyMUAV1fZQoaAZoCWgPQwh2/1iIDtEYwJSGlFKUaBVLMmgWR0DBFizQ1JlKdX2UKGgGaAloD0MIL/oK0ozVFsCUhpRSlGgVSzJoFkdAwRYc6PsAvXV9lChoBmgJaA9DCL06x4DsZRrAlIaUUpRoFUsyaBZHQMEWDSR8twt1fZQoaAZoCWgPQwgW+fVDbOAbwJSGlFKUaBVLMmgWR0DBFnhMQEpzdX2UKGgGaAloD0MI+WhxxjCHHcCUhpRSlGgVSzJoFkdAwRZn+GXXy3V9lChoBmgJaA9DCCxjQzf7kxzAlIaUUpRoFUsyaBZHQMEWWBa9sad1fZQoaAZoCWgPQwhClgUTf8wowJSGlFKUaBVLMmgWR0DBFkhUBGQTdX2UKGgGaAloD0MIkj1CzZCaF8CUhpRSlGgVSzJoFkdAwRa0Bg/kenV9lChoBmgJaA9DCO+OjNXmNyjAlIaUUpRoFUsyaBZHQMEWo9nTRY11fZQoaAZoCWgPQwjyzqEMVWEcwJSGlFKUaBVLMmgWR0DBFpQmPYFrdX2UKGgGaAloD0MIDvPlBdhXGMCUhpRSlGgVSzJoFkdAwRaEZ0CA+nV9lChoBmgJaA9DCF9gVijSzRLAlIaUUpRoFUsyaBZHQMEW8BSLqD91fZQoaAZoCWgPQwiSzVXzHAEhwJSGlFKUaBVLMmgWR0DBFt+9vjwQdX2UKGgGaAloD0MIRRMoYhETHsCUhpRSlGgVSzJoFkdAwRbP3Gn4wnV9lChoBmgJaA9DCLx1/u2y3x3AlIaUUpRoFUsyaBZHQMEWwB5HEuR1fZQoaAZoCWgPQwghyEEJM+0dwJSGlFKUaBVLMmgWR0DBFyuKdhAodX2UKGgGaAloD0MI4o+iztxjJcCUhpRSlGgVSzJoFkdAwRcbPPcBVHV9lChoBmgJaA9DCBZu+UhKGhPAlIaUUpRoFUsyaBZHQMEXC3JYDDF1fZQoaAZoCWgPQwinzTgNUXUdwJSGlFKUaBVLMmgWR0DBFvus3hn8dX2UKGgGaAloD0MIwY2ULZJmJcCUhpRSlGgVSzJoFkdAwRdmH6/IsHV9lChoBmgJaA9DCP3c0JSdrhXAlIaUUpRoFUsyaBZHQMEXVcKXv6V1fZQoaAZoCWgPQwgFw7mGGfogwJSGlFKUaBVLMmgWR0DBF0XcrRShdX2UKGgGaAloD0MIH0yKj08AI8CUhpRSlGgVSzJoFkdAwRc2HZbpvHV9lChoBmgJaA9DCAAapUv/QiPAlIaUUpRoFUsyaBZHQMEXoG34Kx91fZQoaAZoCWgPQwhTXiuhu0QdwJSGlFKUaBVLMmgWR0DBF5ATIvJzdX2UKGgGaAloD0MIGcdI9gg1IcCUhpRSlGgVSzJoFkdAwReALHdXT3V9lChoBmgJaA9DCAd5PZgU1yLAlIaUUpRoFUsyaBZHQMEXcGh/RVp1fZQoaAZoCWgPQwiLi6NyE0UXwJSGlFKUaBVLMmgWR0DBF9wdlum8dX2UKGgGaAloD0MIYd9OIsIvHcCUhpRSlGgVSzJoFkdAwRfLwhnrZHV9lChoBmgJaA9DCLmI78SsFxjAlIaUUpRoFUsyaBZHQMEXu9v863l1fZQoaAZoCWgPQwgct5ifG/IgwJSGlFKUaBVLMmgWR0DBF6wY3vQXdX2UKGgGaAloD0MI9gfKbfveF8CUhpRSlGgVSzJoFkdAwRgWDeTFEXV9lChoBmgJaA9DCHoZxXJLeyHAlIaUUpRoFUsyaBZHQMEYBbK7qY91fZQoaAZoCWgPQwivCtRi8BAjwJSGlFKUaBVLMmgWR0DBF/XHHWBjdX2UKGgGaAloD0MIhqktdZCnHcCUhpRSlGgVSzJoFkdAwRfl+TeO43V9lChoBmgJaA9DCOF5qdiYpxPAlIaUUpRoFUsyaBZHQMEYTcDr7fp1fZQoaAZoCWgPQwh5dvnWh9UQwJSGlFKUaBVLMmgWR0DBGD1nXd0rdX2UKGgGaAloD0MIGTvhJTj1GMCUhpRSlGgVSzJoFkdAwRgtgLqlg3V9lChoBmgJaA9DCBTRr62fLijAlIaUUpRoFUsyaBZHQMEYHcpb2UV1fZQoaAZoCWgPQwgAkX77OtAkwJSGlFKUaBVLMmgWR0DBGIk45tFbdX2UKGgGaAloD0MIQ6uTMxTXE8CUhpRSlGgVSzJoFkdAwRh433Hq/3V9lChoBmgJaA9DCNBk/zwNaBrAlIaUUpRoFUsyaBZHQMEYaPjGT9t1fZQoaAZoCWgPQwhiE5m5wHUYwJSGlFKUaBVLMmgWR0DBGFk1CPZJdX2UKGgGaAloD0MIAg6hSs3+G8CUhpRSlGgVSzJoFkdAwRjBc6/7BXV9lChoBmgJaA9DCAh3Z+22OyDAlIaUUpRoFUsyaBZHQMEYsRbjcVR1fZQoaAZoCWgPQwj2lQfpKZohwJSGlFKUaBVLMmgWR0DBGKExh2GJdX2UKGgGaAloD0MISRCugEJNH8CUhpRSlGgVSzJoFkdAwRiRcoH9nHV9lChoBmgJaA9DCHREvkup+xnAlIaUUpRoFUsyaBZHQMEY/OoHcDd1fZQoaAZoCWgPQwhVE0TdB+AewJSGlFKUaBVLMmgWR0DBGOyPbO/tdX2UKGgGaAloD0MI2nBYGvhxGsCUhpRSlGgVSzJoFkdAwRjcqjJuEXV9lChoBmgJaA9DCCEDeXb5VhvAlIaUUpRoFUsyaBZHQMEYzOSGJvZ1fZQoaAZoCWgPQwiemssNhmoZwJSGlFKUaBVLMmgWR0DBGTaH0se5dX2UKGgGaAloD0MISMMpc/OtH8CUhpRSlGgVSzJoFkdAwRkmLS/j83V9lChoBmgJaA9DCIiCGVOwhhnAlIaUUpRoFUsyaBZHQMEZFkytV7x1fZQoaAZoCWgPQwg/dEF9y6wZwJSGlFKUaBVLMmgWR0DBGQaJ2t+1dX2UKGgGaAloD0MItY0/UdmYIsCUhpRSlGgVSzJoFkdAwRl7dEb5unV9lChoBmgJaA9DCJg1scBXDCrAlIaUUpRoFUsyaBZHQMEZa0kv9Lp1fZQoaAZoCWgPQwjxLEFGQNUfwJSGlFKUaBVLMmgWR0DBGVuN3np0dX2UKGgGaAloD0MIOWItPgUAFMCUhpRSlGgVSzJoFkdAwRlL+YtxuXV9lChoBmgJaA9DCHQkl/+QHhvAlIaUUpRoFUsyaBZHQMEZ3JF9a2Z1fZQoaAZoCWgPQwhMjGX6JSIUwJSGlFKUaBVLMmgWR0DBGcxoh6jWdX2UKGgGaAloD0MINwAbECHGJ8CUhpRSlGgVSzJoFkdAwRm8t8NQTHV9lChoBmgJaA9DCIdrtYe98BrAlIaUUpRoFUsyaBZHQMEZrSlnAZd1fZQoaAZoCWgPQwgQ641aYZopwJSGlFKUaBVLMmgWR0DBGj7rcCYDdX2UKGgGaAloD0MIpBmLprNTGcCUhpRSlGgVSzJoFkdAwRouvXbudHV9lChoBmgJaA9DCK38MhgjIiTAlIaUUpRoFUsyaBZHQMEaHwUpNK11fZQoaAZoCWgPQwiXAz3UtpEdwJSGlFKUaBVLMmgWR0DBGg9wR5C4dX2UKGgGaAloD0MI/cHAc+9BKMCUhpRSlGgVSzJoFkdAwRqil54W13V9lChoBmgJaA9DCCmWW1oNqRfAlIaUUpRoFUsyaBZHQMEaknc+JP91fZQoaAZoCWgPQwgGgZVDi+wcwJSGlFKUaBVLMmgWR0DBGoLL6k6+dX2UKGgGaAloD0MIm+JxUS3aKcCUhpRSlGgVSzJoFkdAwRpzRQaaTnV9lChoBmgJaA9DCP6d7dEbXiDAlIaUUpRoFUsyaBZHQMEbC/ywwCd1fZQoaAZoCWgPQwjNzqJ3KrAlwJSGlFKUaBVLMmgWR0DBGvvSKFZgdX2UKGgGaAloD0MI2V2gpMDyGMCUhpRSlGgVSzJoFkdAwRrsHTqjanV9lChoBmgJaA9DCBxEa0WbAyvAlIaUUpRoFUsyaBZHQMEa3JHZsbh1fZQoaAZoCWgPQwgv/UtSmcIWwJSGlFKUaBVLMmgWR0DBG26X6ZYxdX2UKGgGaAloD0MIKlPMQdBpJMCUhpRSlGgVSzJoFkdAwRteSIP9UHV9lChoBmgJaA9DCOutga0SHCDAlIaUUpRoFUsyaBZHQMEbTmZ/kNp1fZQoaAZoCWgPQwiH+IctPboWwJSGlFKUaBVLMmgWR0DBGz6eyzHCdX2UKGgGaAloD0MI0egOYmfKIsCUhpRSlGgVSzJoFkdAwRupovi97HV9lChoBmgJaA9DCAnE6/oF6yrAlIaUUpRoFUsyaBZHQMEbmUaAFxJ1fZQoaAZoCWgPQwj2fThIiGImwJSGlFKUaBVLMmgWR0DBG4lh9b5edX2UKGgGaAloD0MII59XPPWYIMCUhpRSlGgVSzJoFkdAwRt5nK4hEHV9lChoBmgJaA9DCLBz02acTiLAlIaUUpRoFUsyaBZHQMEb4jMFEAp1fZQoaAZoCWgPQwil2qfjMfMawJSGlFKUaBVLMmgWR0DBG9HeUILPdX2UKGgGaAloD0MISKRt/IlqGMCUhpRSlGgVSzJoFkdAwRvB9uP3jHV9lChoBmgJaA9DCDcawFsg+SDAlIaUUpRoFUsyaBZHQMEbsjRD1Gt1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 150000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
 
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": -7.753159415535629, "std_reward": 1.9323980692626028, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-08-03T09:34:58.767445"}
 
1
+ {"mean_reward": -9.929054142069072, "std_reward": 2.081925295377696, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-08-05T02:40:05.336148"}
vec_normalize.pkl CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:4409f6c783d19441f66c4ee8cec87472e42778148a55b619a15893a0d8c2e80c
3
  size 2387
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a569e767a1fcb0f3141ba7412836ac180cb5a6590bf50200d528c54c7c3575cc
3
  size 2387