--- license: apache-2.0 library_name: peft tags: - alignment-handbook - generated_from_trainer - trl - dpo - generated_from_trainer datasets: - HuggingFaceH4/ultrafeedback_binarized base_model: alignment-handbook/zephyr-7b-sft-full model-index: - name: zephyr-7b-dpo-lora-pubmedqa-ultrafeedback results: [] --- # zephyr-7b-dpo-lora-pubmedqa-ultrafeedback This model is a fine-tuned version of [EllieS/zephyr-7b-dpo-lora-pubmedqa](https://huggingface.co/EllieS/zephyr-7b-dpo-lora-pubmedqa) on the HuggingFaceH4/ultrafeedback_binarized dataset. It achieves the following results on the evaluation set: - Loss: 0.5835 - Rewards/chosen: -0.1486 - Rewards/rejected: -0.4853 - Rewards/accuracies: 0.7105 - Rewards/margins: 0.3368 - Logps/rejected: -314.4243 - Logps/chosen: -302.0460 - Logits/rejected: -2.5375 - Logits/chosen: -2.5889 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | |:-------------:|:-----:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:| | 0.5703 | 0.92 | 7000 | 0.5835 | -0.1500 | -0.4872 | 0.7140 | 0.3372 | -314.6089 | -302.1864 | -2.5236 | -2.5765 | ### Framework versions - PEFT 0.7.1 - Transformers 4.36.2 - Pytorch 2.1.1+cu121 - Datasets 2.14.6 - Tokenizers 0.15.0