--- license: mit base_model: romainlhardy/roberta-large-finetuned-ner tags: - generated_from_trainer model-index: - name: roberta-large-finetuned-ner-finetuned-ner results: [] datasets: - surrey-nlp/PLOD-filtered --- # roberta-large-finetuned-ner-finetuned-ner This model is a fine-tuned version of [romainlhardy/roberta-large-finetuned-ner](https://huggingface.co/romainlhardy/roberta-large-finetuned-ner) on surrey-nlp/PLOD-filtered dataset. It achieves the following results on the evaluation set: - eval_loss: 0.1264 - eval_precision: 0.9593 - eval_recall: 0.9473 - eval_f1: 0.9533 - eval_accuracy: 0.9488 - eval_runtime: 588.3236 - eval_samples_per_second: 41.032 - eval_steps_per_second: 10.258 - epoch: 0.59 - step: 16493 ## label description ['B-O', 'B-AC', 'I-AC', 'B-LF', 'I-LF'] ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Framework versions - Transformers 4.38.2 - Pytorch 2.2.1+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2