--- base_model: unsloth/Mistral-Nemo-Base-2407-bnb-4bit language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - mistral - trl datasets: - meta-math/MetaMathQA --- # Uploaded model - **Developed by:** EpistemeAI - **License:** apache-2.0 - **Finetuned from model :** unsloth/Mistral-Nemo-Base-2407-bnb-4bit - This mistral model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [](https://github.com/unslothai/unsloth) # Fireball-MathMistral-Nemo-Base-2407 This model is fine-tune to provide better math response than Mistral-Nemo-Base-2407 ## Training Dataset Supervised fine-tuning with datasets with meta-math/MetaMathQA This mistral model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [](https://github.com/unslothai/unsloth) # Model Card for Mistral-Nemo-Base-2407 The Fireball-MathMistral-Nemo-Base-2407 Large Language Model (LLM) is a pretrained generative text model of 12B parameters, it significantly outperforms existing models smaller or similar in size. For more details about this model please refer to our release [blog post](https://mistral.ai/news/mistral-nemo/). ## Key features - Released under the **Apache 2 License** - Trained with a **128k context window** - Trained on a large proportion of **multilingual and code data** - Drop-in replacement of Mistral 7B ## Model Architecture Mistral Nemo is a transformer model, with the following architecture choices: - **Layers:** 40 - **Dim:** 5,120 - **Head dim:** 128 - **Hidden dim:** 14,436 - **Activation Function:** SwiGLU - **Number of heads:** 32 - **Number of kv-heads:** 8 (GQA) - **Vocabulary size:** 2**17 ~= 128k - **Rotary embeddings (theta = 1M)** #### Demo After installing `mistral_inference`, a `mistral-demo` CLI command should be available in your environment. ### Transformers > [!IMPORTANT] > NOTE: Until a new release has been made, you need to install transformers from source: > ```sh > pip install git+https://github.com/huggingface/transformers.git > ``` If you want to use Hugging Face `transformers` to generate text, you can do something like this. ```py from transformers import AutoModelForCausalLM, AutoTokenizer model_id = "EpistemeAI/Fireball-MathMistral-Nemo-Base-2407" tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained(model_id) inputs = tokenizer("Hello my name is", return_tensors="pt") outputs = model.generate(**inputs, max_new_tokens=20) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ``` > [!TIP] > Unlike previous Mistral models, Mistral Nemo requires smaller temperatures. We recommend to use a temperature of 0.3. ## Note `Mistral-Nemo-Base-2407` is a pretrained base model and therefore does not have any moderation mechanisms.