import os import time import copy import torch import torch.nn as nn import torch.optim as optim from torch.optim import lr_scheduler from torchvision import datasets, transforms, models # Training parameters num_epochs = 25 batch_size = 32 learning_rate = 0.001 data_dir = '/kaggle/input/centraasia' # Root folder with subdirectories train, val, and test # Data transformations for train, validation, and test data_transforms = { 'train': transforms.Compose([ transforms.RandomResizedCrop(224), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ]), 'val': transforms.Compose([ transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ]), 'test': transforms.Compose([ transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ]), } # Loading datasets using ImageFolder image_datasets = {x: datasets.ImageFolder(os.path.join(data_dir, x), data_transforms[x]) for x in ['train', 'val', 'test']} dataloaders = {x: torch.utils.data.DataLoader(image_datasets[x], batch_size=batch_size, shuffle=True, num_workers=4) for x in ['train', 'val', 'test']} dataset_sizes = {x: len(image_datasets[x]) for x in ['train', 'val', 'test']} class_names = image_datasets['train'].classes # Device configuration device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # Initializing the ResNet50 model model_ft = models.resnet50(pretrained=True) num_ftrs = model_ft.fc.in_features model_ft.fc = nn.Linear(num_ftrs, len(class_names)) model_ft = model_ft.to(device) # If multiple GPUs are available, wrap the model in DataParallel if torch.cuda.device_count() > 1: model_ft = nn.DataParallel(model_ft) # Loss function and optimizer criterion = nn.CrossEntropyLoss() optimizer_ft = optim.SGD(model_ft.parameters(), lr=learning_rate, momentum=0.9) # Learning rate scheduler exp_lr_scheduler = lr_scheduler.StepLR(optimizer_ft, step_size=7, gamma=0.1) # Training function def train_model(model, criterion, optimizer, scheduler, num_epochs=25): since = time.time() best_model_wts = copy.deepcopy(model.state_dict()) best_acc = 0.0 for epoch in range(num_epochs): print('-' * 30) print('Epoch {}/{}'.format(epoch+1, num_epochs)) for phase in ['train', 'val']: if phase == 'train': model.train() # Training mode else: model.eval() # Validation mode running_loss = 0.0 running_corrects = 0 for inputs, labels in dataloaders[phase]: inputs = inputs.to(device) labels = labels.to(device) optimizer.zero_grad() with torch.set_grad_enabled(phase == 'train'): outputs = model(inputs) _, preds = torch.max(outputs, 1) loss = criterion(outputs, labels) if phase == 'train': loss.backward() optimizer.step() running_loss += loss.item() * inputs.size(0) running_corrects += torch.sum(preds == labels.data) if phase == 'train': scheduler.step() epoch_loss = running_loss / dataset_sizes[phase] epoch_acc = running_corrects.double() / dataset_sizes[phase] print('{} Loss: {:.4f} Acc: {:.4f}'.format(phase, epoch_loss, epoch_acc)) if phase == 'val' and epoch_acc > best_acc: best_acc = epoch_acc best_model_wts = copy.deepcopy(model.state_dict()) print() time_elapsed = time.time() - since print('Training completed in {:.0f}m {:.0f}s'.format(time_elapsed // 60, time_elapsed % 60)) print('Best validation accuracy: {:4f}'.format(best_acc)) model.load_state_dict(best_model_wts) return model # Train the model model_ft = train_model(model_ft, criterion, optimizer_ft, exp_lr_scheduler, num_epochs=num_epochs) # Testing function def test_model(model, dataloader): model.eval() running_corrects = 0 with torch.no_grad(): for inputs, labels in dataloader: inputs = inputs.to(device) labels = labels.to(device) outputs = model(inputs) _, preds = torch.max(outputs, 1) running_corrects += torch.sum(preds == labels.data) test_acc = running_corrects.double() / dataset_sizes['test'] print('Test accuracy: {:.4f}'.format(test_acc)) test_model(model_ft, dataloaders['test'])